Фотогалерея

, Гость!

Ник:
Пароль:


Войти через другие сервисы. Самый удобный и проверенный способ моментально стать пользователем нашего портала.

Статистика

Понедельник783
Вторник510
Среда479
Четверг522
Пятница42
Суббота422
Воскресенье431
Сейчас online:16
Было всего:4981628
Рекорд:4870

Кто онлайн:

Рейтинг сайта

УралWeb Рейтинг@Mail.ru

Яндекс.Метрика

HotLog Яндекс цитирования

Интересно

^^^Здесь может быть ваше фото^^^


Поиск
Поиск

Новости спорта с 17 по 22 апреля 2012 г в ГО Богданович

1). БАСКЕТБОЛ:
Чемпионат и Первенство городского округа Богданович по баскетболу.
Место проведения: с/к «Колорит»

1 группа
1.«ЖКХ»
2. «ДЮСШ» - (преподаватели)
3.«Огнеупоры»
4.«Предприниматели»
5.«МКОУ СОШ № 5»
6.«Сборная ГО Богданович»



Судейство:
1.Байрамалов Евгений
2.Байрамалов Евгений
3.Коптяев Евгений
4.Пешехонов Олег
5,6.Демин Владимир



2 группа
1. «ДЮСШ -97»
2. «Лекс»
3. «Коменская с/т»


Четверг 19.04.12


18-00 «МКОУ СОШ №5» - «Предприниматели» 64:107

Результаты круговых игр:
Первая группа:
I место – «Сборная ГО Богданович»
II место – «Предприниматели»
III место – «ЖКХ»
4 место – «Огнеупоры»
5 место – «ДЮСШ-преподаватели»
6 место – «МКОУ СОШ №5»
Вторая группа:
I место – «Лекс»
II место – «ДЮСШ-97»
III место – «Коменская с/т»


2). 21.04.12 г. на стадионе «Колорит» МКОУ ДОД ДЮСШ прошли соревнования по мини-футболу «Кожаный мяч» 5-6 классы (юноши) ОУ ГО Богданович, в рамках фестиваля школьного спорта в 2011-12 учебном году.
В турнире приняли участие 12 команд. Два тура команды играли на выбывание, пока в финальной пульке не осталось три сильнейших команды. Они и разыграли 1-3 места.
Интрига завязалась в борьбе за 2 и 3 место, а явным фаворитом стала команда Грязновской СОШ, игроки которой учатся в одном классе и тренируются на отделении футбола МКОУ ДОД ДЮСШ. На всех этапах соревнований борьба была упорной, а в финал, помимо команды Грязновской СОШ, попали – команда МБОУ СОШ № 5 и МКОУ СОШ № 2. В итоге места в финале распределились следующим образом:
I место – Грязновская СОШ
II место – МКОУ СОШ № 2
III место – МБОУ СОШ № 5
Районное методическое объединение учителей физической культуры выражает благодарность федерации футбола ГО Богданович (председатель - Михайлов А. Ю.) за наградной фонд турнира и отделению футбола МКОУ ДОД ДЮСШ (старший тренер – Тришевский В.Д.) за организацию судейства соревнований.

3). ВОЛЕЙБОЛ:
7 и 21 апреля 2012 года в спортивном комплексе «Колорит» и спортивных залах МКОУ СОШ № 5 и № 4 прошли соревнования по волейболу «Серебряный мяч» среди юношей (7.04.12 г.) и девушек (21.04.12 г.) 9-11 классов общеобразовательных школ ГО Богданович, в рамках фестиваля школьного спорта в 2011-12 учебном году.

Турнир проходил сначала по подгруппам, затем лучшие три команды оспаривали медали и кубки за 1-3 места.
Конечные результаты соревнований следующие:
Среди юношей:
I место – «Грязновская СОШ»
II место – «Кунарская СОШ»
III место – «Барабинская СОШ»
Среди девушек:
I место – «МКОУ СОШ № 3»
II место – «Барабинская СОШ»
III место – «МБОУ СОШ № 5»
Непредсказуемыми оказались результаты у юношей. У девушек интриги не произошло. Как и ожидалось, лидером стала команда МКОУ СОШ № 3, где участницы команды занимаются волейболом в МКОУ ДОД ДЮСШ.

4). СТРЕЛЬБА ИЗ ПНЕВМАТИЧЕСКОЙ ВИНТОВКИ:
22 апреля 2012 года прошли соревнования по стрельбе из пневматической винтовки среди военно-патриотических клубов ГО Богданович и юнармейских отрядов общеобразовательных школ, посвящённые 67 годовщине Победы Советского народа в Великой Отечественной войне.

Место проведения: тир МКОУ СОШ № 2
Организатор: Военно-патриотический центр десантного профиля «Спецназ-юниор» им.Мироненко А.Г.
Возрастная категория 1994-95 г.рождения:
1 место – Корелин Михаил (ВПЦ ДП «Спецназ-юниор» им.Мироненко А.Г.)
2 место – Васильев Игорь (ВПК «Каскад»)
3 место – Махнёв Андрей (МКОУ СОШ № 4)
Возрастная категория 1996-97 г.рождения:
1 место – Рубцов Юрий (ВПЦ ДП «Спецназ-юниор» им.Мироненко А.Г.)
2 место – Шестаков Александр (ВПЦ ДП «Спецназ-юниор» им.Мироненко А.Г.)
3 место – Санников Александр (МКОУ СОШ № 4) и Арапов Вадим (МКОУ СОШ № 4)
Возрастная категория 1998-99 г.рождения:
1 место – Головина Регина (МКОУ СОШ № 4)
2 место – Бормотов Павел (ВПЦ ДП «Спецназ-юниор» им.Мироненко А.Г.)
3 место – Алимпиев Никита (ВПЦ ДП «Спецназ-юниор» им.Мироненко А.Г.)

5). ВОЛЕЙБОЛ:
С 20 по 22 апреля 2012 года в спортивном центре «Олимп» прошёл очередной тур Чемпионата Свердловской области по волейболу среди мужчин.

Молодая команда ГО Богданович показала достойную игру с сильнейшими соперниками. В этом туре команда волейболистов встречалась с лидерами Чемпионата. Игра была напряжённой. Борьба велась за каждое очко, пусть и уступили в поединке команда г. Богдановича, не судя по игре, настрою, желанию побеждать, мастерству это были игры равных соперников.
Молодцы! Победы волейболистов г. Богдановича были и будут! Все на волейбол!

Комментарий подготовил тренер команды «Колорит» Чемодаков Владимир Геннадьевич.

6). БАСКЕТБОЛ:
21-22 апреля 2012 года в городе Верхняя Пышма во дворце игровых видов «УГМК» прошли заключительные игры Первенства Свердловской области по баскетболу среди мужских команд II группы.


Наша команда «Колорит» встречалась с командами «ОДМ» г. Верхняя Пышма и «НТИ» г. Новоуральск, и одержала две убедительные победы. В первой встрече счёт был 74:48, во второй 63:34.
Команда провела их на хорошем эмоциональном подъёме, чему способствовала хорошая физическая форма и то, что играли в прекрасном зале, где проходят игры среди команд женской супер- лиги.
Итогом Первенства стало седьмое место среди 10 команд (в прошлом сезоне было девятое место), хороший шаг вперёд. Необходимо провести анализ всего сезона и на будущее поставить определённые цели в плане роста команды.
Считаю, что команда заслужила хорошей оценки за проведённый сезон.

Комментарий подготовил тренер команды «Колорит» Пешехонов Олег Петрович.


7). БОКС:
С 15 по 21 апреля 2012 года в городе Казань, республика Татарстан, прошел финал Первенства России по боксу среди старших юношей 1996 – 97 годов рождения, в котором приняли участие 215 спортсменов из всех уголков нашей страны.
Победители Федеральных округов и всероссийских спортивно – физкультурных ведомств соревновались за право попасть в состав сборной команды России.
Свердловскую область на Первенстве России представляли 7 боксеров. В составе сборной команды Российского Студенческого Спортивного Союза приняли участие и наши земляки, учащиеся МКОУ ДОД ДЮСШ городского округа Богданович, Демин Егор и Никита Казанцев.
Демин Егор – в/к до 63 кг. В данной весовой категории приняли участие 20 спортсменов, 7 из которых имеют звание кандидат в мастера спорта России, два спортсмена являются победителями Первенства Европы 2011 года. В такой непростой группе нашему земляку пришлось непросто, одержав уверенную победу в первых двух боях, Егор встретился с действующим победителем Европы, «первым номером» страны в данной весовой категории Тамерланом Батдыевым, и со счетом 10:13 увы уступил победу титулованному спортсмену, заняв 5 место в России.
Никита Казанцев, в/к до 75 кг. В первом бою Никита встретился с представителем республики
Башкортостан Валиахметовым Виктором и со счетом 3:4 одержал победу, во втором поединке Никита проиграл Дмитрию Лядецкому из города Челябинска. Занял Никита 9 место в России.


8). БОКС:
С 21 по 22 апреля 2012 года в г. Талица прошло открытое Первенство Талицкого городского округа по боксу на призы главы ГО.

Результаты учащихся отделения бокса МКОУ ДОД ДЮСШ ГО Богданович:
I место – Захаров Дмитрий в в/к-42 кг
I место – Берсенёв Кирилл в в/к-40 кг
I место – Берсенёв Геннадий в в/к-68 кг
I место – Горзов Алексей в в/к-34 кг
I место – Гагаринов Яков в в/к-30 кг
I место – Самигулин Влад в в/к-60 кг
II место – Валов Павел в в/к-40 кг
II место – Мышкин Роман в в/к-42 кг
II место – Макрушин Даниил в в/к-32 кг
II место – Петров Михаил в в/к-36 кг

Информацию подготовил тренер-преподаватель отделения бокса МКОУ ДОД ДЮСШ Васильчиков Константин Сергеевич.


9). «ГОНКИ НА ВЫЖИВАНИЕ»:
21 апреля 2012 года прошёл II этап Свердловской области технических соревнований «Гонки на выживание» на легковых автомобилях версия «Ёрш».

Результаты соревнований среди переднеприводных автомобилей:
I место – Игошин Игорь (№18) г. Екатеринбург
II место – Захаров Алексей (№88) г. Богданович
III место – Черданцев Виталий (№3) г. Богданович
Результаты соревнований среди заднеприводных автомобилей:
I место – Балобанов Сергей (№25) г. Артёмовский
II место – Капустин Александр (№81) г. Богданович
III место – Подкорытов Виктор (№69) г. Камышлов

По сумме двух этапов следующие результаты:
Среди переднеприводных автомобилей:
I место – Захаров Алексей (№88) г. Богданович
II место – Игошин Игорь (№18) г. Екатеринбург
III место – Быкова Светлана (№07) г. Богданович
Среди заднеприводных автомобилей:
I место – Балобанов Сергей (№25) г. Артёмовский
II место – Капустин Александр (№81) г. Богданович
III место – Дёмин Николай (№41) г. Екатеринбург

III этап областных технических соревнований «Гонки на выживание» пройдёт 28-29 июля в г. Ирбите (байкслёт).

Информацию подготовил главный судья соревнований Флягин Сергей Павлович.



Конкурс «Лучший учитель физической культуры ГО Богданович»


Конкурс «ЛУЧШИЙ УЧИТЕЛЬ ФИЗИЧЕСКОЙ КУЛЬТУРЫ ГОРОДСКОГО ОКРУГА БОГДАНОВИЧ» (далее – Конкурс) проводился в целях:
- развития и поощрения инновационных педагогических процессов в сфере физической культуры и спорта;
- стимулирования программно-методической работы в области физической культуры и спорта;
- повышения квалификации и развития творческой инициативы работников физической культуры и спорта образовательных учреждений;
- разработки авторских программ и методик;
- выявления и поощрения лучших педагогов-организаторов физкультурно-оздоровительной и спортивной работы с детьми и учащейся молодёжью.

Основными задачами Конкурса являлись:
определение наиболее эффективных организационных форм физкультурно-оздоровительной и спортивной работы, популярных в молодёжной среде видов физкультурно-спортивной деятельности;
- пропаганда здорового образа жизни, передового опыта физкультурно-оздоровительной и спортивной работы с детьми и учащейся молодёжью, региональных и авторских программ по развитию детско-юношеского физкультурно-спортивного и олимпийского движения;
- формирование общественного мнения о престижности профессии педагога по физической культуре и спорту.

Конкурс проводился в 2011-2012 учебном году в два этапа:

1 тур - защита автореферата – 28 марта 2012 г. МКОУ СОШ № 3
2 тур – проведение открытого занятия с учащимися другого общеобразовательного учреждения – 20 апреля 2012 г. МОУ СОШ № 4
Общее руководство подготовкой и проведением Конкурса осуществлялось Управлением образования городского округа (районное методическое объединение учителей физической культуры ГО Богданович).
В Конкурсе, по желанию, приняли участие учителя физической культуры из 9 общеобразовательных учреждений городского округа Богданович.

Конкурс проходил в два тура:


1 тур. Теоретическая защита специалистом (до 12 мин.) представленного им автореферата по организации и проведению учебной или внеучебной физкультурно-оздоровительной и спортивной работы.
2 тур. Выступление специалиста /открытое занятие/ (до 45 мин.) с обязательной демонстрацией на группе обучающихся общеобразовательного учреждения наиболее ярких фрагментов авторских программ по организации учебных или внеучебных физкультурно-оздоровительных и спортивных мероприятий.

Победители и призёры Конкурса определялись Конкурсной комиссией (представители Управления образования и ДЮСШ) по сумме баллов, набранных конкурсантами в двух турах.

Победитель Конкурса будет представлять наш городской округ на региональном этапе конкурса «Мастер педагогического труда среди работников физической культуры и спорта», который состоится в сентябре-октябре 2012 г.

Победители конкурса:
1 место – Исмакаева Светлана Исрафиловна (МКОУ СОШ № 3)
2 место – Семёнова Людмила Николаевна (МБОУ СОШ № 5) и Сметанина Елена Васильевна (МКОУ СОШ № 9)
3 место – Смолина Ольга Анатольевна (Полдневская ООШ)




АНОНС


1). БАСКЕТБОЛ:
Чемпионат и Первенство городского округа Богданович по баскетболу.

Место проведения: с/к «Колорит»

24.04.2012 г. (вторник)

18.00 «ДЮСШ-преподаватели» - «ДЮСШ-97»
19.30 «МКОУ СОШ №5» - «Лекс»
20.40 «Предприниматели» - «ЖКХ»

25.04.2012 г. (среда)

19.30 «Сборная ГО Богданович» - «Огнеупоры»

2). «ВЕСЕННИЙ КРОСС»:
27 апреля 2012 года на лыжной базе «Берёзка» пройдут соревнования по лёгкой атлетике «Весенний кросс», в зачёт Спартакиады среди производственных коллективов 2011/2012 гг. по Первой и Второй группам.


1группа:
2 группа:

1. ОАО «ОГНЕУПОРЫ»
1. «ТРАНСПОРТ» (Локомотив-ОАО «Транспорт»)

2. «ПРЕДПРИНИМАТЕЛИ – ООО «КСМ»»
2. «БПТ»

3. «АДМИНИСТРАЦИЯ - МУ «ХК «ФАКЕЛ»
3. «ОВД»

4. «ДЮСШ – горком учителей»
4. «МЧС»

5. «ВЭС»
5. «Комбикормовый завод»

6. «ЖКХ»
6. СК «Уральский»


Соревнования лично-командные.
Участвуют – мужчины и женщины не зависимо от возраста. Мужчины-6 чел., зачёт по 3. Женщины – 4 чел., зачёт по 3.
Дистанция: мужчины – 1 км, женщины – 500 м.
Начало соревнований в 16.00.

Бывает, что утром автомобиль не заводится, хотя накануне заряжали аккумулятор, были отключены все потребители, глохнет при движении в виду «разрядки».

Подобные «симптомы» проявляются вследствие утечки электроэнергии. Определить причины этого « недуга» можно, следует уточнить состояние аккумулятора. Чтобы выполнить эти действия, нам потребуется: ареометр, вольтметр, нагрузочная вилка. Сразу удаляем с корпуса аккумулятора грязь, насухо его протираем, ведь загрязнения и влага могут стать причиной его разрядки – это и понятно, вода - это хороший проводник электрического тока. Сказывается и температура окружающей среды. Аккумулятор способен за ночь разрядиться, если автомобиль оставлен на улице в сильный мороз, или гараж не отапливается.

Требуется снять обе клеммы с аккумулятора, зачистить их, воспользовавшись напильником или ножиком, удалив все окалины. Оцениваем состояние клемм, присутствующих на генераторе, стартере, также корпусе автомобиля. Нужно все соединения зачистить, окалины считаются на них диэлектриками, препятствующими прохождению тока. Все ржавые шайбы меняем на новые. Уточняем состояние проводника схемы «двигатель - корпус». Необходимо определить показатель электролита в аккумуляторе. Выполняем это визуально. Достаточно открутить пробки, которые закрывают банки (ячейки) нашего аккумулятора, заглянуть вовнутрь. При этом электролит будет покрывать кромки верхние у пластин. Уровень этот упал, значит, в ячейки аккумулятора налейте дистиллированную воду.
Далее потребуется зарядка аккумулятора. Установите на зарядном устройстве показатель силы тока в формате 1/10 от аккумуляторной емкости, зарядите устройство. Процедура осуществляется в течение десяти часов. Затем уточните плотность электролита, используя ареометр. Замеры производят во всех банках аккумулятора. Плотность нормальная - 1,25-1,27 г/куб. см. Другие цифры в ячейках продемонстрируют неэффективную работу заряженного аккумулятора. Теперь нагрузочной вилкой проверьте напряжение заряженного аккумулятора. Показатель не должен в течение 5 секунд опускаться ниже 12 вольт. Если данный аккумулятор проверку не прошел, то приобретайте новый, обращайтесь в сервисный центр. Следует учитывать, что после ремонтных работ оборудование может выйти из строя достаточно быстро. Аккумулятор в процессе работы «движка» заряжается от генератора.

Если этот генератор неисправен, то тогда рабочий аккумулятор находится в полуразряженном состоянии. Генератор может стать причиной неэффективной работы. Проверить можно так: завести авто, при холостых оборотах произвести замер напряжения на клеммах аккумулятора. Вольтметр должен показать нормальное напряжение 14 вольт, если произошла разрядка, то 12 вольт. Запустите все потребители электрооборудования, и на холостых оборотах двигателе машины вновь замерьте напряжение, присутствующее на аккумуляторе. Напряжение ниже 14 вольт, значит, генератор неисправен.
Выход из строя любого потребителя в электросети совершенно не повлияет на аккумулятор, формат общего сетевого напряжения. Тогда просто перегорит плавкий предохранитель данного потребителя.

Установка бесконтактной системы зажигания стала логичным продолжением модернизации машины. Не люблю я регулировать всяческие зазоры, всегда боюсь недокрутить или перекрутить :).

Поэтому установка этой системы воспринималась как благо и стремление к более современным технологиям (смешно звучит в контексте классики).

При походе в магазин были куплены:

бесконтактный распределитель зажигания (38.3706-01);
коммутатор многоискровой "Пульсар-М" для ВАЗ-2108;
стандартный коммутатор ВАЗ-2108 (для чего далее);
катушка зажигания ВАЗ-2108;
жгут проводов для подключения коммутатора к распределителю.


Ни с чем кроме распределителя, заминок при покупке не возникло. А вот с распределителем какая-то непонятка. Продавцы некоторых магазинов уверяют, что бесконтактного распределителя для низкого блока (двигатель 1300) в природе просто нет, а у них есть только нивские, которые они всем и впаривают. В этом случае просто плюем и идем пытать счастья в следующий магазин, где-нибудь обязательно попадутся более грамотные консультанты.

Теперь установка. Новую катушку зажигания ставим на место старой. С этим проблем нет, если конечно гайки крепления не закисли, но тут строгих рекомендаций нет. Я например, все таки обломил одну ввареную в брызговик шпильку крепления, после чего установка катушки немного усложнилась.

Потом устанавливаем распределитель. Что бы затем долго не искать нужный момент зажигания, снимаем со старого распределителя крышку и выставляем бегунок нового в тоже положение, что и на старом. После этого вынимаем старый распределитель из блока цилиндров и на его место устанавливаем новый.

Осталось установить коммутатор. Установить его можно в любом понравившемся месте моторного отсека (лишь бы длины проводов потом хватило). Тут вспоминаем, что было куплено два коммутатора, ну а если их два значит оба и надо поставить :). Возникает вопрос, а зачем это собственно нужно? В любой литературе где упоминается электронная система зажигания написано, что коммутатор должен иметь хороший контакт с корпусом машины не только через жгут проводов, но и через свой корпус. В связи с этим поиск неисправности в данной системе путем замены одного коммутатора на другой превращается из простой перестановки разъема из одного в другой (в запасной), в кручение гаек. Дабы не заниматься этим где-то в дороге решили установить сразу два, основной и резервный.

Местом для установки коммутаторов был выбран кронштейн бочка омывателя. К нему был прикреплен дополнительный переходник для крепления сразу двух коммутаторов (один над другим).

установка БСЗ


Для надежного соединения их с корпусом машины, был проложен дополнительный корпусной провод. Теперь для переключения с коммутатора на коммутатор можно просто переткнуть разъем жгута. При подключении жгута к распределителю и коммутатору ошибиться невозможно (все разъемы с ключами). Так что нужно разобраться только с подключением катушки зажигания. Если жгут проводов стандартный, то к ней идут два провода, коричневый идет на клемму катушки +Б, а голубой соответственно на другую. При использовании заводского коммутатора, установка закончена. Пробуем завести машину, и после этого уточняем момент зажигания с помощью стробоскопа.

В моем же случае использовался коммутатор "Пульсар-М" который в своем составе имеет систему коррекции опережения зажигания и систему резерв (езда с неисправным датчиком Холла). Для блока управления этими системами был выбран низ торпеды (прямо над блоком предохранителей). В торпеде были просверлены два отверстия и через них саморезами был прикручен блок. Провода в моторный отсек провели совместно с основным жгутом.

установка БСЗ

установка БСЗ


Установка закончена. Чуда конечно не произошло, летать машина не начала. Но по субъективным ощущениям заводиться стала лучше. А так греет мысль, что распределитель стал практически не обслуживаемым устройством, да и корректор опережения зажигания не лишняя деталь с бензином нашего качества.

Карбюратор хороший, но как и у всех есть недостатки и первый который мне жутко не понравился это электропневмоклапан и пневмоклапан на карбюраторе (ЭПХХ). В автономной системе ХХ (АСХХ), именно такая у озона, воздух в зоне регулирования количества смеси (кольцо с отверстиями и рег.болт-клапан) движется со сверхзвуковой скоростью (оттуда и шипение на ХХ), а тут конус клапана болтается как извини меня в стакане и бьётся об его стенки, откуда при такой фигне взятся устойчивым холостым.

Озон.

регулировка



Карбюратор хороший, но как и у всех есть недостатки и первый который мне жутко не понравился это электропневмоклапан и пневмоклапан на карбюраторе (ЭПХХ). В автономной системе ХХ (АСХХ), именно такая у озона, воздух в зоне регулирования количества смеси (кольцо с отверстиями и рег.болт-клапан) движется со сверхзвуковой скоростью (оттуда и шипение на ХХ), а тут конус клапана болтается как извини меня в стакане и бьётся об его стенки, откуда при такой фигне взятся устойчивым холостым.

Делается следующее: покупается

-регулировочный винт количества от 06 карба

-электромагнитный клапан от тогоже

-блок ЭПХХ 2108, это связано с тем, что порог включения подачи топлива "классического" 1100-1200об/мин и из-за удлинившегося отключаемого участка канала ХХ при сбросе газа двигатель не успевает выйти на ХХ и глохнет, у 2108 порог 1800об/мин (хотя при разрезании одной дорожки на плате родного можно сделать 1400-1500об/мин, но я не помню чё резал)
-для тех кто серьёзно взялся - поставьте электронное зажигание

Далее делается следующее: ставится регулировочный винт вместо пневмоклапана и к темже винтам через проставки концевик чтоб он был в том же положении. Вместо держателя топливного жиклёра ХХ электромагнитный клапан (жиклёр обязательно остаётся родной).
Далее устанавливается ЭПХХ согласно схеме включения, только вывод который должен идти на концевик садим на массу, а концевик на карбе одним выводом на плюс а другим на выход блока к клапану.

И ещё важная вещь: как можно ближе к блоку ЭПХХ, а лучше внутри, параллельно его питанию ставим фильтрующий конденсатор 0,22-1,0мкФ плёночный, ещё бы не помешал кондёр параллельно питанию микросхемы блока ЭПХХ 33-100мкФ, благодаря чему фильтруются помехи из-за которых блок глючит и тормозит (глохнет движок при сбросе газа). Аналогичным способом можно установить ЭПХХ на а/м без него (2106, 03, 01, 02).

Второе что многим попортило нервы это холодный пуск, глюк в большинстве случаев вызывает телескопическая тяга из-за того что клинит и туго ходит, в этом случае верхний стаканчик ликвидируется и вместо него ставиться шайба на 3мм, обратите внимание на поворотную разрезную втулочку, в которую вставляется нижний стаканчик, она не должна клинить и сильно блтаться.

И ещё из-за того что эта тяга действует на ось воздушной заслонки не под прямым углом, заслонка трётся об стенку первой камеры и тысяч через 80-100 начинает там клинить, с этим глюком не боролся т.к. был установлен Солекс 21073.

Настройка пускового устройства производится без снятия карбюратора на прогретом до рабочей температуры двигателе с исправной и отрегулированной системой зажигания. Сначала настраивается приоткрытие дроссельной заслонки: на работающем двигане с полностью вытянутым подсосом лёгким нажатием отвёртки приоткрываем воздушную заслонку обороты двигателя должны быть для классики 3250-3350об/мин, для ЗМЗ402 2650-2750об/мин, регулируется подгибанием соответствующей тяги.

Далее регулируется приоткрытие воздушной заслонки винтиком под пробочкой. Т.е. при возврате возд. заслонки (после предыдущего пункта) обороты должны уменьшиться для классики на 300об/мин, для ЗМЗ402 на 200-250об/мин, ВАЖНО не забыть при контроле оборотов заткнуть пальцем дырку под рег. винт. Про ХХ ниже.


Солекс.

регулировка



Сначала расскажу об установке солекса на классику, что для этого требуется:

-собственно карб 21051, 21053 или 21073, не желательно ставить восьмёрочные т.к. они для поперечного движка, но люди ставят и всё работает
-прокладку термоизоляционную текстолитовую толстую сантиметра 1,5 точно не помню, не советую делать бутерброд из 5ти прокладок-согнёте фланец и без того слабый
-паронитовую прокладку под солекс с двумя круглыми дырами, должна быть по форме текстолитовой
-паронитовую прокладку с одной овальной дырой
-набор приводных тяг от 213ой нивы
-тройник для обратки с боковым штуцером на 6мм
-шланг для обратки 6мм
-шланг для подвода ОЖ к обогревателю каналов СХХ (такой же как во впускной коллектор)
-тросик пускового устройства у меня родной не дотянулся поставил от 2108 укороченный немного
-хомуты соответствующие диаметрам шлангов иначе не обтянут, не экономьте на них дешёвые режут шланги
-блок ЭПХХ 2108

Если у вас всё есть и старое снято то вперёд. Сначала кладём прокладку с овальной дырой, потом текстолитовую, потом с двумя круглыми и не наоборот т.к. последняя прокладка закрывает каналы карбюратора, затем карб и кронштейн из комплекта тяг. Навёртываем гайки ОБЯЗАТЕЛЬНО моментом не более 15Н*м лучше 10Н*м и подтянуть через недельку (10Н*м это усилие в 6,8 кг на конец ключа длиной 15см).

Подсоединяем тяги привода дроссельных заслонок, но здесь есть один нюанс, чтобы реакция на педаль была плавной надо сделать следующее: в наборе есть поворотный рычаг с двумя шарикообразными наконечниками, берём его и длинное плечо укорачиваем (пилится, сверлится четыре отверстия и заклёпывается на две заклёпки) до такой же длины что и короткое плечо, и желательно перед установкой карба шлифануть кулачок пивода ускорительного насоса(его профиль должен остаться таким какой был) и его рычаг в месте контакта. Если всего этого не проделать, то реакция на педаль газа будет неадекватная и опасная особенно зимой, происходит это из-за довольно высокого трения в приводе ускорительного насоса да ещё и профиль кулачка неравномерный и получается: давишь плавно на педаль, рычаг ускорительного насоса наезжает на бугорок и подклинивает, давишь дальше, рычаг освобождается и педаль уходит почти в пол(ездишь как дурак).
Последовательно с трубкой подвода ОЖ ко впускному коллектору включаем подогреватель каналов СХХ.

До насоса врезаем тройник и подключаем обратку. Здесь одно замечание: при осушке бака может потребваться передавить шланг обратки, чтобы закачать топливо из бака.

Устанавливается тросик пускового устройства.
Подсоединяется к нижнему штуцеру вакуумник, два верхних соединяются между собой короткой трубкой.
Подсоединяем вентиляцию картера.
Подключите ЭПХХ по стандарту, о доработке уже написано там где про озон и где-то в инете тоже есть. Установите два топливных фильтра до и после насоса. Электронное зажигание само собой рекомендуется.


Теперь об особенностях настройки. После установки проверьте полноту открытия дросселей, про ХХ ниже будет. Далее проблема заключается в настройке пускового устройства т.к. карб не родной зазорами так просто не оттелаешься (работать конечно будет, но не должным образом). Настраивается как и Озон сначала дроссельная заслонка, но здесь проблема приоткрыть воздушную заслонку, приоткрывается она так: ослабляется крепление пускового сектора и последний аккуратно отводится в сторону так чтобы рег.винт приоткрытия дросселя касался сектора в том же месте и была возможность приоткрыть возд.заслонку. Обороты для зубил и классики 3250-3350об/мин ЗМЗ402 2650-2750об/мин. Настроили? Далее за воздушную по инструкции до снижения оборотов на 300 и 200-250 соответственно, но регулировки может не хватить. В этом случае надо доработать надфилем приводной сектор как на рисунке красным.

И теперь всё можно настроить должным образом.

К151С.

регулировка карбюраторов


Нестабильный ХХ достал сразу, сначала резиновый пыльник на регулировочном винте троса газа слез со своего места и попал под сектор привода, ХХ то 1500 то 2000 да ещё и трясёт двиган, но это не проблема захомутал его на месте намертво и всё. И всё равно ХХ гавёный это раз и невозможно установить минимальные холостые из-за следующего: на ХХ делаешь перегазовку и двигатель глохнет-не успевает выйти на ХХ и всё это из-за пневмоклапана, как и на Озоне, который как в стакане. ЭПХХ ликвидируем, вместо пневмоклапана на карбе ставим заглушку с родной прокладкой. Для исключения дизелинга при выключении зажигания просто изумительно подходит электромагнитный клапан от Солекса для этого надо:

-выкрутить пробку эмульсионного жиклёра ХХ

-выкрутить эмульсионный жиклёр ХХ и достать его медной проволочкой диаметром 0,5-0,8мм

-взять эл.маг.клапан снять с него жиклёр и рассверлить отверстие диаметр сверла 1,0мм, если будет мало увеличить на 0,05-0,1мм

-убрать зенки любым способом

-завернуть клапан по методике как для Солекса

-подсоединить провод от замка зажигания (один из идущих к концевику карба на 3110 это фиолетовый вроде)

Подключать при таком раскладе ЭПХХ на низкооборотистом 402ом нет ни какого смысла, т.к. предётся порог включения сделать 1800об/мин. То есть экономия будет незначительная, и снизится надёжность всей системы.

Дальше, что такое рециркуляция отработавших газов? Это сознательное уменьшение мощности двигателя для снижения выброса окислов азота. Выкидываем, на расход не влияет.
Далее по совету Тихомирова А.Н. "Карбюраторы К151" поднимаем уровень в поплавковой камере до 19-20мм от верхней кромки до топлива и уменьшаем до минимума(но без провалов) производительность ускорительного насоса. Про ХХ ниже.

В итоге имеем отменный ХХ, ни каких провалов на переходных режимах, хорошую динамику и моральное удовлетворение.
Пусковое устройство настраивается аналогично Озону.
Ещё очень интересная вещь: когда двигатель прогревается на подсосе его очень неприятно колбасит, происходит это из-за чрезмерного опережения зажигания вакуумным корректором. Для исключения этого недостатка без нарушения работы вакуумника надо через тройничёк (у меня от семёры остался) соединить трубку вакуумного привода с родным штуцером на карбе и со штуцером для привода рециркуляции отраб.газов, тройничёк располагается прямо рядом с родным штуцером на карбе. При таком раскладе вакуумник включается плавнее и чуть попозже смотри рисунок.

На первом графике мы видим разряжение подводимое к вакуумнику в зависимости от оборотов двигателя (без нагрузки, под нагрузкой подъём сместится в сторону меньших оборотов).
Синим - по стандарту.
Красным - после переделки.
Зелёным - разряжение при котором вакуумник вытянут по максимуму.
На втором графике - угол опережения создаваемый вакуумником при техже условиях.


Холостой ход.

Настраивается для любого карба одинакого очень просто: винтом количества необходимые обороты, винтом качества максимальные (при повороте винта в любую сторону от этого положения обороты должны падать, иначе чёто работает не должным образом) и потихоньку завёртываем обедняя смесь(для ДААЗ 4178 отвёртываем) до тех пор пока движок не начнёт потряхивать и чуть-чуть обратно, чтобы работало ровно. Если требуется подкорректировать обороты - винт количества - винт качества, пока не добьётесь того что надо, но винт качества должен быть всегда последним в регулировке.
К151 - иногда при сбросе газа после большой нагрузки движок глохнет это из-за уменьшившегося уровня в поплавковой камере при этом приходится поднимать обороты ХХ или менять стиль езды.
Всё написанное не является догмой и прямым руководством к действию, а является просто описанием сделанного после чего был положительный результат.

P.S. Есть хороший, надёжный, реальный способ уменьшить расход 92го примерно на 10% на классических жигулях и одновременно повысить мощность двигателя это увеличение степени сжатия до 9,7-9,9 вместо заводских 8,6. Для двигла 1,5л это шлифовка головы на 1,4мм, проверено-работает.
Одна из самых популярных тем во всех “курилках”, так или иначе связанных с тюнингом авто, – выпускные системы двигателей.

По крайней мере, я чаще отвечаю на вопросы о выхлопе, чем о клапанах, головках, коленвалах и прочих составляющих настройки двигателей. Причем диапазон вопросов примерно следующий: от “скажите, а как применить формулу для вычисления резонансной частоты (приводится соотношение для резонатора Гельмгольца) к четырехдроссельному впуску?” до “мне друг подарил “паук” со своего спортивного “гольфа”. Сколько прибавится лошадиных сил, если я его установлю на свой автомобиль?” или “ я строю себе мотор. Какой глушитель купить, чтобы было больше мощности?”, или “сколько лошадиных сил прибавится, если я вместо катализатора установлю резонатор?”. Причем во всех вопросах красной линией проходит добавочная мощность.

выпускная система


ТАК ДАВАЙТЕ ДЛЯ НАЧАЛА РАЗБЕРЕМСЯ, ГДЕ ЖЕ ЛЕЖИТ ЭТА ДОБАВОЧНАЯ МОЩНОСТЬ. И ПОЧЕМУ ВЫПУСКНОЙ ТРАКТ ВЛИЯЕТ НА РАБОТУ МОТОРА.

Если мы все дружно понимаем, что мощность есть произведение вращающего момента на скорость вращения коленчатого вала (обороты), то понятно, что мощность – зависимая от скорости величина. Рассмотрим чисто теоретический двигатель (не важно, электрический он, внутреннего сгорания или турбореактивный), который отдает постоянный вращающий момент на оборотах от 0 до бесконечности. (кривая 2 на рис. 1) Тогда его мощность будет линейно расти с оборотами от 0 до бесконечности (кривая 1 на рис. 1). Предмет нашего интереса – четырехтактные многоцилиндровые двигатели внутреннего сгорания в силу конструкции и процессов, в них происходящих, имеют рост момента с увеличением оборотов до его максимальной величины, и с дальнейшим увеличением оборотов момент сновападает (кривая 3 на рис. 1). Тогда и мощность будет иметь аналогичный вид (кривая 4 на рис. 1). Важным обстоятельством для понимания функций выпускной системы является связь вращающего момента с коэффициентом наполнения цилиндра. Давайте себе представим процесс, происходящий в цилиндре в фазе впуска. Предположим, коленчатый вал двигателя вращается настолько медленно, что мы можем наблюдать движение топливовоздушной смеси в цилиндре и в любой момент времени давление во впускном трубопроводе и цилиндре успевает выравниваться. Предположим, что вверхней мертвой точке (ВМТ) давление в камере сгорания равно атмосферному. Тогда при движении поршня из ВМТ в нижнюю мертвую точку (НМТ) в цилиндр попадет количество свежей топливовоздушной смеси, точно равное объему цилиндра. Говорят, что в таком случае коэффициент наполнения равен единице. Предположим, что в вышеописанном процессе мы закроем впускной клапан в положении поршня, соответствующем 80% его хода. Тогда мы наполним цилиндр только на 80% его объема и масса заряда составит соответственно 80%. Коэффициент наполнения в таком случае будет 0.8. Другой случай. Пусть некоторым образом нам удалось во впускном коллекторе создать давление на 20% выше атмосферного. Тогда в фазе впуска мы сможем наполнить цилиндр на 120% по массе заряда, что будет соответствовать коэффициенту наполнения 1.2. Так, теперь самое главное. Вращающий момент двигателя совершенно точно на кривой момента соответствует коэффициенту наполнения цилиндра. То есть вращающий момент там выше, где коэффициент наполнения выше, и ровно во столько же раз, если, конечно, мы не учитываем внутренние потери в двигателе, которые растут со скоростью вращения. Из этого понятно, что кривую момента и, соответственно, кривую мощности определяет зависимость коэффициента наполнения от оборотов. У нас есть возможность влиять в некоторых пределах на зависимость коэффициента наполнения от скорости вращения двигателя с помощью изменения фаз газораспределения. В общем случае, не вдаваясь в подробности, можно сказать, что чем шире фазы и чем в более раннюю по отношению к коленчатому валу область мы их сдвигаем, тем на больших оборотах будет достигнут максимум вращающего момента. Абсолютное значение максимального момента при этом будет немного меньше, чем с более узкими фазами (кривая 5 на рис. 1). Существенное значение имеет так называемая фаза перекрытия. Дело в том, что при высокой скорости вращения определенное влияние оказывает инерция газов в двигателе. Для лучшего наполнения в конце фазы выпуска выпускной клапан надо закрывать несколько позже ВМТ, а впускной открывать намного раньше ВМТ. Тогда у двигателя появляется состояние, когда в районе ВМТ при минимальном объеме над поршнем оба клапана открыты и впускной коллектор сообщается с выпускным через камеру сгорания. Это очень важное состояние в смысле влияния выпускной системы на работу двигателя. Теперь, я думаю, пора рассмотреть функции выпускной системы. Сразу скажу, что в выпускной системе присутствует три процесса. Первый – сдемпфированное в той или иной степени истечение газов по трубам. Второй – гашение акустических волн с целью уменьшения шума. И третий – распространение ударных волн в газовой среде. Любой из названных процессов мы будем рассматривать с позиции его влияния на коэффициент наполнения. Строго говоря, нас интересует давление в коллекторе у выпускного клапана в момент его открытия. Понятно, что чем меньшее давление, а лучше даже ниже атмосферного, удастся получить, тем больше будет перепад давления от впускного коллектора к выпускному, тем больший заряд получит цилиндр в фазе впуска. Начнем с достаточно очевидных вещей. Выпускная труба служит для отвода выхлопных газов за пределы кузова автомобиля. Совершенно понятно, что она не должна оказывать существенного сопротивления потоку. Если по какой то причине в выпускной трубе появился посторонний предмет, закрывающий поток газов (например, соседи пошутили и засунули в выхлопную трубу картошку), то давление в выпускной трубе не будет успевать падать, и в момент открытия выпускного клапана давление в коллекторе будет противодействовать очистке цилиндра. Коэффициент наполнения упадет, так как оставшееся большое количество отработанных газов не позволит наполнить цилиндры в прежней степени свежей смесью. Соответственно, двигатель не сможет вырабатывать прежний вращающий момент. Весьма важно понимать, что размеры трубы и конструкция глушителей шума в серийном автомобиле достаточно хорошо соответствуют количеству отработанных газов, вырабатываемых двигателем в единицу времени. Как только серийный двигатель подвергся изменениям с целью увеличения мощности (будь то увеличение рабочего объема или увеличение момента на высоких оборотах), сразу увеличивается расход газа через выпускную трубу и следует ответить на вопрос, а не создает ли теперь в новых условиях избыточного сопротивления серийная выпускная система. Так что из рассмотрения первого процесса, обозначенного нами, следует сделать вывод о достаточности размеров труб. Совершенно понятно, что после некоторого разумного размера увеличивать сечение труб для конкретного двигателя бессмысленно, улучшения не будет. А отвечая на вопрос, где же мощность, можно сказать, что тут главное не потерять, прибрести же ничего невозможно. Из практики могу сказать, что для двигателя объемом 1600 куб. см, имеющего хороший вращающий момент до 8000 об./мин., вполне достаточно трубы диаметром 52 мм. Как только мы говорим о сопротивлении в выпускной системе, необходимо упомянуть о таком важном элементе, как глушитель шума. Так как в любом случае глушитель создает сопротивление потоку, то можно сказать, что лучший глушитель – полное его отсутствие. К сожалению, для дорожного автомобиля это могут себе позволить только отчаянные хамы. Борьба с шумом – это, как ни верти, забота о нашем с вами здоровье. Не только в повседневной жизни, но и в автоспорте действуют ограничения на шум, производимый двигателем автомобиля. Должен сказать, что в большинстве классов спортивных автомобилей шум выпуска ограничен уровнем 100 дб. Это довольно лояльные условия, но без глушителя ни один автомобиль не будет соответствовать техтребованиям и не сможет быть допущенным к соревнованиям. Поэтому выбор глушителя – всегда компромисс между его способностью поглощать звук и низким сопротивлением потоку.

ТЕПЕРЬ, НАВЕРНОЕ, СЛЕДУЕТ ПРЕДСТАВИТЬ СЕБЕ, КАКИМ ОБРАЗОМ ЗВУК ГАСИТСЯ В ГЛУШИТЕЛЕ.

Акустические волны (шум) несут в себе энергию, которая возбуждает наш слух. Задача глушителя состоит в том, чтобы энергию колебаний перевести в тепловую. По способу работы глушители надо разделить начетыре группы. Это ограничители, отражатели, резонаторы и поглотители.

ОГРАНИЧИТЕЛЬ
выпускная системаПринцип его работы прост. В корпусе глушителя имеется существенное заужение диаметра трубы, некое акустическое сопротивление, а за ним сразу большой объем, аналог емкости. Продавливая через сопротивление звук, мы колебания сглаживаем объемом. Энергия рассеивается в дросселе, нагревая газ. Чем больше сопротивление (меньше отверстие), тем эффективней сглаживание. Но тем больше сопротивление потоку. Наверное, плохой глушитель. Однако в качестве предварительного глушителя в системе – довольно распространенная конструкция.


ОТРАЖАТЕЛЬ
выпускная системаВ корпусе глушителя организуется большое количество акустических зеркал, от которых звуковые волны отражаются. Известно, что при каждом отражении часть энергии теряется, тратится на нагрев зеркала. Если устроить для звука целый лабиринт из зеркал, то в конце концов мы рассеем почти всю энергию и наружу выйдет весьма ослабленный звук. По такому принципу строятся пистолетные глушители. Значительно лучшая конструкция, однако так как в недрах корпуса мы заставим также газовый поток менять направление, то все равно создадим некоторое сопротивление выхлопным газам. Такая конструкция чаще всего применяется в оконечных глушителях стандартных систем.

РЕЗОНАТОР
выпускная системаГлушители резонаторного типа используют замкнутые полости, расположенные рядом с трубопроводом и соединенные с ним рядом отверстий. Часто в одном корпусе бывает два не равных объема, разделенных глухой перегородкой. Каждое отверстие вместе с замкнутой полостью является резонатором, возбуждающим колебания собственной частоты. Условия распространения резонансной частоты резко меняются, и она эффективно гасится вследствие трения частиц газа в отверстии. Такие глушители эффективно в малых размерах гасят низкие частоты и применяются в основном в качестве предварительных, первых в выпускных системах. Существенного сопротивления потоку не оказывают, т.к. сечение не уменьшают.

ПОГЛОТИТЕЛЬ
выпускная системаСпособ работы поглотителей заключается в поглощении акустических волн неким пористым материалом. Если мы звук направим, например, в стекловату, то он вызовет колебания волокон ваты и трение волокон друг о друга. Таким образом, звуковые колебания будут преобразованы в тепло. Поглотите ли позволяют построить конструкцию глушителя без уменьшения сечения трубопровода и даже без изгибов, окружив трубу с прорезанными в ней отверстиями слоем поглощающего материала. Такой глушитель будет иметь минимально возможное сопротивление потоку, однако и хуже всего снижает шум. Надо сказать, что серийные выпускные системы используют в большинстве случаев различные комбинации всех приведенных способов. Глушителей в системе бывает два, а иногда и больше. Следует обратить внимание на особенность конструкций глушителей, которая в случае самостоятельного изготовления не позволяет достичь эффективного снижения шума, хотя кажется, что все сделано правильно. Если внутри глушителя у его стенок нет поглощающего материала, то источником звука становятся стенки корпуса. Многие замечали, что некоторые глушители имеют снаружи асбестовую обкладку, прижатую дополнительным листом фальшкорпуса. Это и есть та мера, которая позволит ограничить излучение через стенки и предотвратить нагрев соседних элементов автомобиля. Такая мера характерна для глушителей первого и второго типов. Есть еще одно обстоятельство, которое нельзя обойти вниманием в статье о тюнинге. Это тембр звука. Часто пожелания клиента к тюнинговой компании состоят в том, чтобы посредством замены глушителя добиться “благородного” звучания мотора. Надо заметить, что если требования к выпускной системе не распространяются дальше изменения “голоса”, то за дача существенно упрощается. Можно сказать, что, вероятнее всего, для таких целей больше подходит глушитель поглотительного типа. Его объем, количество набивки, а также сама набивка определяют спектр частот, интенсивно поглощаемых. Практически любая мягкая набивка поглощает в большей степени высокочастотную составляющую, придавая бархатистость звуку. Глушители резонаторного типа гасят низкие частоты. Таким образом, варьируя размеры, содержимое и набор элементов, можно подобрать тембр звучания.

ТЕПЕРЬ МОЖНО ПЕРЕЙТИ К ВОПРОСУ,НАИБОЛЕЕ ПОПУЛЯРНОМУ И БОЛЕЕ СЛОЖНОМУ. КАКИМ ОБРАЗОМ ДВИГАТЕЛЬ БЛАГОДАРЯ НАСТРОЙКЕ ВЫПУСКНОЙ СИСТЕМЫ МОЖЕТ ПОЛУЧИТЬ ДОПОЛНИТЕЛЬНУЮ МОЩНОСТЬ?

Как мы уже уяснили, коэффициент наполнения, вращающий момент и мощность зависят от перепада давления между впускным и выпускным коллекторами в фазе продувки. Выпускную систему можно построить таким образом, что распространяющиеся в трубах ударные волны, отражаясь от различных элементов системы, будут возвращаться к выпускному клапану в виде скачка давления или разрежения. Откуда же появится разрежение, спросите вы. Ведь в трубу мы всегда только нагнетаем и никогда не отсасываем. Дело в том, что в силу инерции газов за скачком давления всегда следует фронт разрежения. Именно фронт разрежения интересует нас больше всего. Нужно только сделать так, чтобы он был в нужном месте в нужное время. Место нам уже хорошо известно. Это выпускной клапан. А время нужно уточнить. Дело в том, что время действия фронта весьма незначительное. А время открытия выпускного клапана, когда фронт разрежения может создать полезную для нас работу, сильно зависит от скорости вращения двигателя. Да и весь период фазы выпуска нужно разбить на две составляющие. Первая – когда клапан только что открылся. Эта часть характеризуется большим перепадом давления и активным истечением газов в выпускной коллектор. Отработанные газы и без посторонней помощи после рабочего хода покидают цилиндр. Если в этот момент волна разрежения достигнет выпускного клапана, маловероятно, что она сможет повлиять на процесс очистки. А вот конец выпуска более интересен. Давление в цилиндре уже упало почти до атмосферного. Поршень находится около ВМТ, значит, объем над поршнем минимален. Да еще впускной клапан уже приоткрыт. Помните? Такое состояние (фаза перекрытия) характеризуется тем, что впускной коллектор через камеру сгорания сообщается с выпускным. Вот теперь, если фронт раз режения достигнет выпускного клапана, мы сможем существенно улучшить коэффициент наполнения, так как даже за короткое время действия фронта удастся продуть маленький объем камеры сгорания и создать разрежение, которое поможет разгону топливовоздушной смеси в канале впускного коллектора. А если представить себе, что как только все отработанные газы покинут цилиндр, а разрежение достигнет свое го максимального значения, выпускной клапан закроется, мы сможем в фазе впуска получить заряд больший, чем если бы очистили цилиндр только до атмосферного давления. Этот процесс дозарядки цилиндров с помощью ударных волн в выпускных трубах может позволить получить высокий коэффициент наполнения и, как следствие, дополнительную мощность. Результат его действия примерно такой, как если бы мы нагнетали давление во впускном коллекторе с помощью компрессора. В конце концов, какая разница, каким образом создан перепад давления, заталкивающий свежую смесь в камеру сгорания, с помощью нагнетания со стороны впуска или разрежения в цилиндре? Такой вот процесс может вполне происходить в выпускной системе ДВС. Осталась сущая мелочь. Нужно такой процесс организовать.

Первым необходимым условием дозарядки цилиндров с помощью ударных волн надо назвать существование достаточно широкой фазы перекрытия. Строго говоря, нас интересует не столько сама ширина фазы как геометрическая величина, сколько интервал времени, когда оба клапана открыты. Без особых разъяснений понятно, что при постоянной фазе с увеличением скорости вращения время уменьшается. Из этого автоматически следует, что при настройке выпускной системы на определенные обороты одним из варьируемых параметров будет ширина фазы перекрытия. Чем выше обороты настройки, тем шире нужна фаза. Из практики можно сказать, что фаза перекрытия менее 70 градусов не позволит иметь заметный эффект, а значение для настроенных на обычные 6000 об/мин систем составляет 80 - 90 градусов.
выпускная системаВторое условие уже определили. Это необходимость вернуть к выпускному клапану ударную волну. Причем в многоцилиндровых двигателях вовсе необязательно возвращать ее в тот цилиндр, который ее сгенерировал. Более того, выгодно возвращать ее, а точнее, использовать в следующем по порядку работы цилиндре. Дело в том, что скорость распространения ударных волн в выпускных трубах - есть скорость звука. Для того чтобы возвратить ударную волну к выпускному клапану того же цилиндра, предположим, на скорости вращения 6000 об/мин, надо расположить отражатель на расстоянии примерно 3,3 метра. Путь, который пройдет ударная волна за время двух оборотов коленчатого вала при этой частоте, составляет 6,6 метра. Это путь до отражателя и обратно. Отражателем может служить, например, резкое многократное увеличение площади трубы. Лучший вариант - срез трубы в атмосферу. Или, наоборот, уменьшение сечения в виде конуса, сопла Лаваля или, совсем грубо, в виде шайбы. Однако мы договорились, что различные элементы, уменьшающие сечение, нам неинтересны. Таким образом, настроенная на 6000 об/мин выпускная система предполагаемой конструкции для, например, четырехцилиндрового двигателя будет выглядеть как четыре трубы, отходящие от выпускных окон каждого цилиндра, желательно прямые, длиной 3,3 метра каждая. У такой конструкции есть целый ряд существенных недостатков. Во-первых, маловероятно, что под кузовом, например, Гольфа длиной 4 метра или даже Ауди А6 длиной 4,8 метра возможно разместить такую систему. Опять же, глушитель все-таки нужен. Тогда мы должны концы четырех труб ввести в банку достаточно большого объема, с близкими к открытой атмосфере акустическими характеристиками. Из этой банки надо вывести газоотводную трубу, которую необходимо оснастить глушителем.

Короче, такого типа система для автомобиля не подходит. Хотя справедливости ради надо сказать, что на двухтактных четырехцилиндровых мотоциклетных моторах для кольцевых гонок она применяется. Для двухтактного мотора, работающего на частоте выше 12 000 об/мин, длина труб сокращается более чем в четыре раза и составляет примерно 0,7 метра, что вполне разумно даже для мотоцикла.

Вернемся к нашим автомобильным двигателям. Сократить геометрические размеры выпускной системы, настроенной на те же 6000 об/мин, вполне можно, если мы будем использовать ударную волну следующим по порядку работы цилиндром. Фаза выпуска в нем наступит для трехцилиндрового мотора через 240 градусов поворота коленчатого вала, для четырехцилиндрового - через 180 градусов, для шестицилиндрового - через 120 и для восьмицилиндрового - через 90. Соответственно, интервал времени, а следовательно, и длина отводящей от выпускного окна трубы пропорционально уменьшается и для, например, четырехцилиндрового двигателя сократится в четыре раза, что составит 0,82 метра. Стандартное в таком случае решение - всем известный и желанный "паук". Конструкция его проста. Четыре так называемые первичные трубы, отводящие газы от цилиндров, плавно изгибаясь и приближаясь друг к другу под небольшим углом, соединяются в одну вторичную трубу, имеющую площадь сечения в два-три раза больше, чем одна первичная. Длина от выпускных клапанов до места соединения нам уже известна - для 6000 об/мин примерно 820 мм. Работа такого состоит в том, что следующий за ударной волной скачок разрежения, достигая места соединения всех труб, начинает распространяться в обратном направлении в остальные три трубы. В следующем по порядку работы цилиндре в фазе выпуска скачок разрежения выполнит нужную для нас работу.

Тут надо сказать, что существенное влияние на работу выпускной системы оказывает также длина вторичной трубы. Если конец вторичной трубы выпущен в атмосферу, то импульсы атмосферного давления будут распространяться во вторичной трубе навстречу импульсам, сгенерированным двигателем. Суть настройки длины вторичной трубы состоит в том, чтобы избежать одновременного появления в месте соединения труб импульса разрежения и обратного импульса атмосферного давления. На практике длина вторичной трубы слегка отличается от длины первичных труб. Для систем, которые будут иметь дальше глушитель, на конце вторичной трубы необходимо разместить максимального объема и максимальной площади сечения банку с поглощающим покрытием внутри. Эта банка должна как можно лучше воспроизводить акустические характеристики бесконечной величины воздушного пространства. Следующие за этой банкой элементы выпускной системы, т.е. трубы и глушители, не оказывают никакого воздействия на резонансные свойства выпускной системы. Их конструкцию, влияние на сопротивление потоку, на уровень и тембр шума мы уже обсудили. Чем ниже избыточное давление они обеспечат, тем лучше.

выпускная система


Итак, мы уже рассмотрели два варианта построения настроенной на определенные обороты выпускной системы, которая за счет дозарядки цилиндров на оборотах резонанса увеличивает вращающий момент. Это четыре отдельные для каждого цилиндра трубы и так называемый "паук" "четыре в один". Следует также упомянуть о варианте "два в один - два в один" или "два Y", который наиболее часто встречается в тюнинговых автомобилях, так как легко компонуется в стандартные кузова и не слишком сильно отличается по размерам и форме от стандартного выпуска. Устроен он достаточно просто. Сначала трубы соединяются попарно от первого и четвертого цилиндров в одну и второго и третьего в одну как цилиндров, равноотстоящих друг от друга на 180 градусов по коленчатому валу. Две образовавшиеся трубы также соединяются в одну на расстоянии, соответствующем частоте резонанса. Расстояние измеряется от клапана по средней линии трубы. Попарно соединяющиеся первичные трубы должны соединяться на расстоянии, составляющем треть общей длины. Один из часто встречающихся вопросов, на которые приходится отвечать, это какой "паук" предпочесть. Сразу скажу, что ответить на этот вопрос однозначно нельзя. В некоторых случаях стандартный выпускной коллектор со стандартной приемной трубой работает абсолютно так же. Однако сравнить упомянутые три конструкции, несомненно, можно.

Тут надо обратиться к такому понятию, как добротность. Постольку, поскольку настроенный выпуск суть есть колебательная система, резонансные свойства которой мы используем, то понятно, что ее количественная характеристика - добротность - вполне может быть разной. Она действительно разная. Добротность показывает, во сколько раз амплитуда колебаний на частоте настройки больше, чем вдали от нее. Чем она выше, тем больший перепад давления мы можем использовать, тем лучше наполним цилиндры и, соответственно, получим прибавку момента. Так как добротность - энергетическая характеристика, то она неразрывно связана с шириной резонансной зоны. Не вдаваясь в подробности, можно сказать, что если мы получим большой выигрыш по моменту, то только в узком диапазоне оборотов для высокодобротной системы. И наоборот, если диапазон оборотов, в котором достигается улучшение, велик, то по величине выигрыш незначительный, это низкодобротная система.. На рис 2 по вертикальной оси отложено давление - разрежение, получаемое в районе выпускного клапана, а по горизонтальной оси - обороты двигателя. Кривая 1 характерна для высокодобротной системы. В нашем случае это четыре раздельные трубы, настроенные на 6000 об/мин.
выпускная системаПервый. Так как вращающий момент пропорционален перепаду давления, то наибольший прирост даст высокодобротная система номер один. Однако в узком диапазоне оборотов. Настроенный двигатель с такой системой будет иметь ярко выраженный в зоне резонанса. И совершенно никакой на других оборотах. Так называемый однорежимный или мотор. Такой двигатель, скорее всего, потребует многоступенчатую трансмиссию. Реально такие системы в автомобилях не применяются. Система второго типа имеет более характер, используется в основном для кольцевых гонок. Рабочий диапазон оборотов гораздо шире, провалы меньше. Но и прирост момента меньше. Таким образом настроенный двигатель тоже не подарок, об эластичности и мечтать не приходится. Однако если главное - высокая скорость при движении, то под такой режим будет подстроена и трансмиссия, и пилот освоит способы управления. Система третьего типа еще ровнее. Диапазон рабочих оборотов достаточно широкий. Плата за такую покладистость - еще меньшая добавка момента, которую можно получить при правильной настройке. Такие системы используются для ралли, в тюнинге для дорожных автомобилей. То есть для тех автомобилей, которые ездят с частой сменой режимов движения. Для которых важен ровный вращающий момент в широком диапазоне оборотов.
выпускная системаВторой. Как всегда, бесплатных пряников не бывает. На вдвое меньших от резонансной частоты оборотах фаза отраженной волны повернется на 180 градусов, и вместо скачка разрежения в фазе перекрытия к выпускному клапану будет приходить волна давления, которая будет препятствовать продувке, то есть сделает желаемую работу наоборот. В результате на вдвое меньших оборотах будет провал момента, причем чем большую добавку мы получим вверху, тем больше потеряем внизу. И никакими настройками системы управления двигателем невозможно скомпенсировать эту потерю. Останется только мириться с этим фактом и эксплуатировать мотор в том диапазоне, который можно признать "рабочим".

Однако человечество придумало несколько способов борьбы с этим явлением. Один из них - электронно-управляемые заслонки около выходных отверстий в головке. Суть их работы состоит в том, что на низкой кратной частоте заслонка перегораживает частично выхлопной канал, препятствуя распространению ударных волн и тем самым разрушая ставший вредоносным резонанс. Выражаясь более точно, во много раз уменьшая добротность. Уменьшение сечения из-за прикрытых заслонок на низких оборотах не столь важно, так как генерируется небольшое количество выхлопных газов. Второй способ - применение так называемых коллекторов . Их работа состоит в том, что они оказывают небольшое сопротивление потоку, когда давление в коллекторе меньше, чем у клапана, и увеличивают сопротивление, когда ситуация обратная.

выпускная система Третий способ - несовпадение отверстий в головке и коллекторе. Отверстие в коллекторе большего размера, чем в головке, совпадающее по верхней кромке с отверстием в головке и не совпадающее примерно на 1 - 2 мм по нижней. Суть та же, что и в случае с конусом. Из головки в трубу - "по шерсти", обратно - "против шерсти". Два последних варианта нельзя считать исчерпывающими ввиду того, что "по шерсти" все-таки несколько хуже, чем гладкие трубы. В качестве лирического отступления могу сказать, что несовпадение отверстий - стандартное простое решение для многих серийных моторов, которое почему-то многие "тюнингаторы" считают дефектом поточного производства.

Третий. Следствие второго. Если мы настроим выпускную систему на резонансную частоту, например 4000 об/ мин, то на 8000 об/мин получим вышеописанный "провал, если на этих оборотах система окажется работоспособной.

Немаловажный аспект при рассмотрении работы настроенного выпуска - это требования к его конструкции с точки зрения акустических свойств. Первое и самое важное - в системе не должно быть других отражающих элементов, которые породят дополнительные резонансные частоты, рассеивающие энергию ударной волны по спектру. Это значит, что внутри труб должны отсутствовать резкие изменения площади сечения, выступающие внутрь углы и элементы соединения. Радиусы изгиба должны быть настолько большими, насколько позволяет компоновка мотора в автомобиле. Все расстояния по средней линии трубы от клапана до места соединения должны быть по возможности одинаковыми.

Второе важное обстоятельство состоит в том, что ударная волна несет в себе энергию. Чем выше энергия, тем большую полезную работу мы можем от нее получить. Мерой энергии газа является температура. Поэтому все трубы до места их соединения лучше теплоизолировать. Обычно трубы обматывают теплостойким, как правило, асбестовым материалом и закрепляют его на трубе с помощью бандажей или стальной проволоки.

Раз уж сейчас говорим о конструкции выпускной системы, нужно упомянуть о таком элементе конструкции, как гибкие соединения. Дело в том, что для переднеприводных автомобилей с поперечно расположенным силовым агрегатом существует проблема компенсации перемещений мотора относительно кузова. Так как опоры двигателя при такой компоновке принимают на себя весь реактивный момент от приводных валов ведущих колес, крены силового агрегата относительно кузова в продольном направлении могут иметь значительную величину. Конечно, величина отклонения сильно зависит от жесткости опор, однако нередко перемещения головки блока достигают величины 20 - 50 мм при переходе от торможения двигателем к разгону на низших передачах. В случае, если мы не позволим выпускной системе свободно изгибаться и сделаем ее абсолютно жесткой, конец глушителя должен будет совершать колебания вверх-вниз с амплитудой 500 - 600 мм, что определенно превышает разумную величину дорожного просвета значительной части автомобилей. Если мы попытаемся в таком случае закрепить трубу за кузов, то подвеска глушителя начнет играть роль дополнительной опоры силового агрегата и принимать на себя реактивный момент ведущих колес. В результате или непрерывно будут рваться подвесные элементы выпускной системы, или ломаться трубы. Для того чтобы избавиться от такого нежелательного явления, применяют гибкие соединения между трубами выпускной системы, позволяя приемной трубе перемещаться вместе с мотором, а всей остальной системе оставаться параллельной кузову. Есть несколько конструкций, позволяющих решить эту задачу. Две самые распта окажутся перегруженными и позволят двигателю в подкапотном пространстве с размахом, вполне вероятно превышающим разумные пределы.

выпускная система


Теперь, после того как стали ясны процессы, происходящие в выпускной системе, вполне можно перейти к практическим рекомендациям по настройке выпускных систем. Сразу скажу, что в такой работе нельзя полагаться на свои ощущения и необходимо измерительной системой. Измерять она должна прямым или косвенным методом обязательно как минимум два параметра - вращающий момент и обороты двигателя. Совершенно понятно, что лучший прибор - динамометрический стенд для двигателя. Обычно поступают следующим образом. Для подготовленного к испытаниям двигателя изготавливают экспериментальную выпускную систему. Так как мотор на стенде и нет ограничений в конфигурации труб из-за отсутствующего кузова, самые простые формы вполне применимы. Экспериментальная система должна быть удобной и максимально гибкой для изменения ее состава и длин труб. Хороший и быстрый результат дают различного рода телескопические вставки, позволяющие менять длины элементов в разумных пределах. Если вы хотите добиться от вашей силовой установки максимальных параметров, вы должны быть готовы выполнить значительное количество экспериментов. Математический расчет и "попадание в яблочко" с первого раза исключите из рассмотрения, как событие чрезвычайно маловероятное. Его можно использовать как "приземление в заданном районе". Некоторую уверенность в том, что вы недалеко от истины, дают опыт и предыдущие эксперименты с аналогичными по характеристикам моторами, у которых были получены хорошие результаты.

Тут, вероятно, надо остановиться и ответить на вопрос, а на какую частоту надо настраивать выпускную систему. Для этого надо определить цель. Постольку, поскольку в самом начале статьи мы решили, что будем добиваться максимальной мощности, то лучший в этом смысле вариант, если мы получим прирост момента на том участке моментной кривой, где коэффициент наполнения, а следовательно, и момент начинают существенно падать из-за высокой скорости вращения, т.е. мощность перестанет расти. Тогда небольшое приращение момента даст существенный выигрыш в мощности. См. рис. 3. Для того чтобы узнать эту частоту, необходимо как минимум иметь моментную кривую двигателя с ненастроенным выхлопом, т.е., например, со стандартным коллектором, открытым в атмосферу. Конечно, такие эксперименты весьма шумные и, извините за грубое слово, вонючие, однако необходимые. Некоторые меры по защите органов слуха и хорошая вентиляция позволят получить необходимые данные. Затем, когда нам станет известна частота настройки, нагружаем двигатель так, чтобы обороты стабилизировались в нужной точке кривой при на 100% открытом дросселе.

Теперь можно начинать экспериментировать с различными приемными трубами. Цель - подобрать такую приемную трубу или "паук", а точнее ее длину, чтобы получить прирост момента на нужной частоте. При попадании в нужную точку динамометр сразу отзовется увеличением измеряемой силы. Быстрее всего результат будет получен, если использовать телескопические трубы и менять длину на работающем и нагруженном двигателе. Меры безопасности будут нелишними, так как присутствует вероятность ожога, да и работающий с полной нагрузкой двигатель опасен в смысле разрушения. Известны случаи, когда при аварии обломки блока цилиндров пробивали кузов автомобиля и влетали в кабину водителя. После того как будет найдена конфигурация "паука", можно приступать к настройке вторичной трубы аналогичным образом. Как я уже говорил, влияние всех остальных элементов выпускной системы сводится к тому, чтобы не потерять уже достигнутого. Поэтому достаточно планируемые к установке в автомобиль трубы и глушителъ пристыковать к найденным и настроенным первым двум элементам и убедиться, что настройки сохранились или существенно не ухудшились. Далее можно уже приступать к проектированию и изготовлению рабочей системы, которая будет соответствовать автомобилю и разместится в предназначенном для нее туннеле кузова. Должен сказать, что работа очень большая и маловероятно, что может быть выполнена без специального оборудования. Кроме того, необходимо иметь в виду, что на параметры настройки выпускной системы оказывают влияние многие факторы. Известный авторитет в области спортивных моторов в США Smokey Yunick считает, что совместной настройке подлежит выпускная система, впускные и выпускные каналы головки, форма камеры сгорания, фазы газораспределения (распредвал), фазировка двигателя, впускной коллектор, система питания и система зажигания. Он утверждает, что любое изменение в одной из названных компонент обязательно влечет за собой перенастройку всех остальных для того, чтобы в худшем случае не навредить, а в лучшем достичь большей эффективности мотора. Как минимум понятно, что в фазе перекрытия, когда настроенная выпускная система выполняет полезную работу, мы имеем дело со сквозным потоком газов из впускного в выпускной коллектор через камеру сгорания. Впускной коллектор точно так же, как и выпускная система, может рассматриваться как колебательная акустическая система со своими резонансными свойствами. Так как цель настройки состоит в получении максимального перепада давления, роль впускного коллектора, а точнее его геометрии, очевидна. Ее влияние для моторов с широкой фазой перекрытия может оказаться меньше, чем от выпуска в силу меньшей энергетики, однако совместная настройка категорически необходима. Для узкофазных моторов (читай - серийных) настройка впускного коллектора, пожалуй, единственный способ получить резонансный наддув.

Пару слов хотелось бы сказать о разнице в настройке впрыскного и карбюраторного моторов.
Во-первых, у впрыскного мотора конструкция впускного коллектора может быть любая, так как мы не связаны с конструктивными особенностями карбюратора, а значит, возможности настройки гораздо шире.
Во-вторых, у него на кратных частотах отрицательное влияние обратного перепада давления существенно ниже. Карбюратор на любое движение воздуха в диффузоре распыляет топливо. Поэтому для кратных частот характерно переобогащение смеси из-за того, что один и тот же объем воздуха сначала движется через карбюратор из камеры сгорания к фильтру, а затем в том же такте обратно. В случае электронной системы впрыска количество топлива может быть строго отрегулировано с помощью программы управления. Также программируемый угол опережения зажигания может помочь уменьшить на этих оборотах вредное влияние обратной волны, не говоря уже об управлении теми заслонками на выхлопе, которые уже упоминались.
И, в-третьих, требование качественного приготовления смеси на низких оборотах диктует необходимость применять сужающееся сечение в карбюраторе, известное как диффузор, что создает дополнительное сопротивление потоку на высоких оборотах.

Ради справедливости надо сказать, что горизонтальные сдвоенные карбюраторы Вебер, Деллорто или Солекс частично решают эту проблему, позволяя каждому цилиндру дать трубу необходимой длины с целью настройки на нужные обороты, иметь достаточно большое сечение, но с переобогащением все равно бороться не в силах.

Есть еще один прием, позволяющий повысить эффективность выпускной системы. Применяется он в основном в тюнинге, так как при определенных эстетических наклонностях конструктора позволяет создать броский внешний вид автомобиля. Где-нибудь, как минимум на фотографиях авто американских любителей, вы наверняка видели автомобили с поднятыми из-под заднего бампера чуть ли не до крыши концами выпускных труб. Идея такой конструкции состоит в том, что при движении за задним срезом автомобиля создается "воздушный мешок", или зона разрежения. Если найти то место, где разрежение максимально, и конец выхлопной трубы поместить в эту точку, то уровень статического давления внутри выпускной системы мы понизим. Соответственно статический уровень давления у выпускного клапана упадет на ту же величину. Постольку, поскольку коэффициент наполнения тем выше, чем ниже давление у выпускного клапана, такое решение можно считать удачным.

В заключение хочу сказать, что при кажущейся простоте установка другой, отличной от серийной выпускной системы, как бы она ни была похожа на то, что применяется в спорте, вовсе не гарантирует вашему автомобилю дополнительных лошадиных сил. Если у вас нет возможности провести настройки для вашего конкретного варианта мотора, то самый разумный путь состоит в том, что вы купите полный комплект комплектующих для доработки мотора у того, кто эти испытания уже выполнил и заранее знает результат. Вероятно, комплект должен включать в себя как минимум распредвал, впускной и выпускной коллекторы и программу для вашего блока управления двигателем.

Александр Пахомов
журнал "Тюнинг" Санкт-Петербург
Равномерность распределения топливовоздушной смеси по цилиндрам во многом зависит от впускного коллектора. Многие полагают, что внутренняя полировка коллектора позволяет уменьшить потери на впуске. Но сама по себе эта операция – вырванная страничка из большой книги и кардинально изменить ничего не может.

Неравномерное распределение смеси по цилиндрам связано в первую очередь с конструктивными ошибками при проектировании коллекторов. Разная длина впускного тракта приводит к неоднородному наполнению цилиндров, причем баланс мощности по цилиндрам меняется в зависимости от того, какая заслонка карбюратора открыта. Достаточно примитивно (для впускного коллектора заднеприводного ВАЗа) Это выглядит так: при дросселировании на1-й камере, а так же при работе карбюратора в режиме холостого хода - 1 и 4 цилиндры работают на более богатой смеси чем 2 и 3. При дросселировании на 2-й камере (режим max нагрузок) более обогащенная смесь поступает во 2 - 3 цилиндры; а 1 и 4 испытывают топливо-воздушный "голод". Причина такой пульсации смеси по цилиндрам – неудачное расположение заслонок карбюратора над впускным коллектором.

Убрав часть перегородок между соседними каналами убиваем 2-х зайцев:

1. Выравниваем длину каналов.

2. Под карбюратором появляется полость, в которой смесь перед попаданием во впускные каналы перемешивается, независимо от того на какой камере происходит дросселирование.

коллектор


Блеск и Нищета впускного коллектора ...

Огромное значение также имеет совпадение окон карбюратора и впускного коллектора; впускного коллектора и головки. Смесь движется в каналах с высокой скоростью и ступеньки в местах стыка образуют мощные вихревые потоки, увеличивающие аэродинамические потери и препятствующие поступлению смеси в цилиндры. Убрав ступеньки в местах сопряжений карбюратора и впускного коллектора; впускного коллектора и головки, а так же отполировав коллектор и внутренние полости головки до зеркального блеска - расширяем диапазон крутящего момента и max мощности, причем чем выше обороты, тем результат более выражен. Ступенька между текстолитовой прокладкой и впускным коллектором, характерная для большинства заводских коллекторов, создает дополнительное сопротивление потоку во впускном тракте.

коллектор


Еще один способ оптимизации смесеобразования на штатном коллекторе – закрутить топливовоздушную смесь в больших диффузорах карбюратора, а затем продолжить эту подкрутку в каналах впускного коллектора. На рынок периодически попадают различные примитивные устройства, например гомогенизаторы (на жаргоне "турбинки"), которые монтируются под карбюратором и якобы улучшают процесс смесеобразования. Смесь действительно слегка подкручивается, но сам гомогенизатор перекрывает сечение впускного канала и является существенной помехой потоку. Так что от такой подкрутки больше вреда.

Закрутить смесь не перекрывая, а в отдельных случаях даже увеличив сечение впускных каналов, технически гораздо сложнее, но это реально осуществимо.

коллектор


Вот например малые диффузоры с активными углами атаки, создающие вихревое движение воздушного потока в цилиндрах больших диффузоров. На спортивных автомобилях, пока на них прочно не обосновался впрыск, использовалась другая схема - установка нескольких карбюраторов. Она дает существенное увеличение крутящего момента и растягивает его по всему диапазону - от низких до max оборотов, атак же увеличивает max мощность. Но общие законы работы с коллекторами, изложенные выше, работают и здесь. И при комплексном применении всех приемов – результаты блестящие.

Как это сделать своими руками

Сразу скажу о "полировке впускного коллектора" - то, что предлагают сделать за очень неплохие деньги - в общем-то, надувательство. Хуже не будет, но и лучше особенно не с чего.

То, что предлагаю я - довольно трудоемкая работа, требующая достаточно прямых рук и наличия головы на плечах. Делать ее можно только если "ну очень хочется" или "заодно" при разборке двигателя, поскольку приходится снимать головку.

Итак, поехали. Запасаемся инструментом и материалами. Понадобится (кроме инструмента для разборки-сборки двигателя) следующее:

1. Небольшая высокооборотная электродрель (хотя, конечно, лучше специальная бормашинка - да где же ее взять)

2. Ручные фрезы (шарошки). Лучше не из быстрорежущей стали, а твердосплавные. Я использую две-три разных: в форме капли (диаметром примерно 15 мм, ножка со стороны толстой части), шарик (диаметр примерно 15 мм) и закругленный на конце цилиндр (тоже 15 мм). Удобнее, если зубы будут не прямыми, а винтовыми. Еще понадобится цилиндрическая шарошка такого же размера из абразивного материала.

3. Стержень (или трубка) для шлифовки - диаметр 5...6 мм, длина 150...180 мм, с одной стороны нужно сделать продольную прорезь ножовочным полотном на длину 20...25 мм.

4. Круглый напильник (довольно крупный, но с мелкой насечкой)

5. Чертилка

6. Шкурка мелкая (но не нулевка), лучше на тканевой основе.

7. Если не собираетесь пускать это дело на поток - то специальный шаблон с отверстиями каналов вам делать нецелесообразно (делается из 2...3 мм дюрали). Достаточно стандартных прокладок между головкой и коллекторами. Если кому все-таки нужен чертеж - пишите, кину мылом (укажите, в каком формате - векторном или растровом).

Снимаем головку с двигателя, отсоединяем коллектора, снимаем клапана (и вообще все, что на ней есть). Часто при взгляде на несовпадение каналов головки и коллекторов закрадывается подозрение, что детали левые :-) Часто встречаются "ступеньки" до 3...4 мм!

Берем шаблон (или прокладку коллектора) и с помощью чертилки размечаем на привалочных поверхностях головки и коллекторов границы сечения каналов. На головке это сделать просто, на коллекторах - сложнее и менее точно (с шаблоном - лучше).

Закрепляем головку с помощью струбцин (или помощника :-) на верстаке (очень желателен хороший местный свет!), зажимаем в патрон дрели шарошку (в форме капли) и начинаем доводить форму каналов.

Начинать надо от края, постепенно выводя форму вглубь канала. Движения шарошкой - по дуге, ласково! Останавливаться и пилить на одном месте нельзя - накопаете ям! Неплохо сначала потренироваться на чем-нибудь (на кошках :-)

Правильность формы канала проверяется пальцем - не должно быть перегибов, горбов, иных дефектов поверхности. Помните: лучше недопилить, чем перепилить! Поэтому снимать надо понемногу, почаще контролируя визуально и на ощупь. Правильно выполненый канал в головке является продолжением канала в коллекторе (никаких глубоких фасок и "завалов" на сопряжении. Когда закончите со всеми восемью каналами со стороны коллекторов, поворачивайте головку камерами сгорания к себе.

Если седла клапанов имеют ступеньки на сопряжении с каналами - очень аккуратно выводим их с помощью абразивной шарошки. Что пилить в каналах с этой стороны - подскажет засунутый в канал палец. Он не должен чувствовать ребер от обработки, резких (с малым радиусом) переходов поверхностей, всего, что бы могло мешать движению газа (не спилите направляющую втулку клапана :-)

Форма и размер одноименных (впускных и выпускных) каналов должны быть одинаковыми. Когда и здесь все закончено - вставляете в дрель заготовленный стержень, в его разрез закладываете край полоски шкурки и 5...6 раз оборачиваете ее вокруг стержня (я долго соображал - как будет правильно написать - "в направлении, противоположном вращению патрона" или наоборот? короче, если смотреть с конца стержня, шкурка должна быть намотана по часовой стрелке).

Шлифуете каналы. Когда остановиться - подскажет здравый смысл :-)

Все то же самое проделываете и с коллекторами, единственное отличие - шлифовать выпускной коллектор необязательно, зато нужно, разметив с помощью прокладки "штанов", дополнительно поправить каналы на выходе к приемной трубе (это так правильно называются "штаны").

Теперь, вооружившись круглым напильником, нужно удалить (опять же, контролируя прокладкой) излишки сварки с внутренней поверхности приемной трубы (в месте приварки фланца). Там бывает такое!!! До пяти миллиметров сварки на сторону по всему периметру! Не бойтесь, фланец не отвалится :-) Пилить, не снимая приемную трубу с автомобиля хоть и неудобно, но вполне реально. Главное - почаще менять позу :-)

Заодно нелишним будет притереть клапана.

Очень важный момент - по окончании работ нужно очень тщательно удалить весь абразив с поверхностей головки и коллекторов. Для начала можно продуть сжатым воздухом, промыть бензином, а потом - горячей водой с добавлением стирального порошка (воспользовавшись отсутствием дома жены, это можно сделать в ванне :-), просушить и немедленно смазать стальные детали головки моторным маслом (особенно седла и втулки клапанов).

При сборке головки с коллекторами, во избежание смещения прокладок (и наползания их на столь любовно доведенные каналы), полезно слегка приклеить их к головке (напр., Моментом).

Системы впрыска закиси азота - определенно один из самых экзотических способов тюнинга двигателя. В этой статье рассказывается о применении систем впрыска, приведены определенные факты, примеры и т.д. Также мы хотим поделится своими ощущениями и опытом использования азота на своем автомобиле.

Нужно заметить, что мнение, высказываемое в этой статье, является субъективным и не претендует на абсолютно правильную позицию.
Сначала несколько напоминаний. Вы должны удостовериться, что ваше транспортное средство находится в хорошем техническом состоянии. Все неисправные детали - изношенные кольца, плохие прокладки, насосы и т.д. - должны быть заменены, иначе вы не получите максимальной прибавки мощности. Если у вас американский автомобиль, например, GM, то помните, что инженеры GM разрабатывали двигатели с максимальным запасом прочности. Обратине особое внимание на трансмиссию, тормоза и шины.

Для начинающих

Что нужно для увеличения мощности двигателя. Главный способ - увеличить подачу воздуха, тем самым сжечь как можно больше топлива. Существует несколько способов для осуществления этой задачи, самый распространенный и известный - использование турбин и механических нагнетателей. Но мы говорим о азоте - впрыск азота тоже способ (и неплохой) сжечь как можно больше смеси.
Впрыск азота решает эту задачу двумя способами. Первый способ имеет меньший эффект в применении и состоит в следующем: азот находится в баллоне под давлением примерно в 1000 Psi в жидком состоянии; при активизации системы азот переходит в газообразное состояние, что способствует понижению температуры воздуха. Тот из вас, кто помнит немного физику, знает, что понижение температуры воздуха повышает его плотность. Типичная система впрыска азота способна понизить температуру поступающего воздуха, примерно, до 60 - 80 градусов F.
Второй способ имеет большую эффективность : окись азота - двухкомпонентна, при нагревании до 572 градусов F нитрооксид расподается на азот и кислород, именно кислород, содержание которого в нитрооксиде чуть ли не в три раза больше, чем в воздухе позволяет сжечь максимальное количество топлива. Впрыск азота имеет и третий, косвеный, способ увеличения мощности: в процессе впрыска повышается давление в цилиндрах двигателя, которое увеличивает эффективность горения смеси.

"Мокрые" и "Сухие" системы

Имеются два основных типа систем впрыска азота. "Мокрая" система, принцип работы которой заключается в подаче топливно-азотистой смеси. "Сухая" система, принцип которой заключается непосредственно в подаче только азота во впускной коллектор. Очевидно, есть преимущества и недостатки обеих систем. Рассмотрим работу "сухой" системы на примере комплекта NOS 5176 и двигателя LT1. Система работает при давлении топлива в 80 psi. Увеличение давления и поддержка постоянной величины в магистрали происходит посредством работы топливного соленоида. При повышенном давлении топливо поступает непосредственно во впускной коллектор. Данная система повышает давление топлива выше нормы именно за счет работы соленоида. Этот тип системы имеет несколько главных преимуществ. Первое - для установки системы не требуется кардинального вмешательства в штатную топливную систему и установки дополнительной магистрали, что облегчает установку. Во вторых, поскольку давление азота в баллоне колеблется, количество поступающего топлива, будет изменяться в том же самом количестве (так как система использует давление азота, чтобы повысить количество сгораемого топлива).
У этой системы есть несколько недостатков (напоминаю, система установлена на LT1). Первое: штатные форсунки могут не выдержать необходимого системе давления в 80 psi, установка комплекта инжекторов Bosch/Ford SVO, может исправить этот недостаток. Во вторых, количество азота, впрыскиваемого в коллектор может меняться, в то время как количество топлива - постоянно. Из-за этого возможен впрыск несбалансированной топливно-воздушной смеси в некоторые цилиндры.

"Мокрые" системы впрыска азота основаны на применении специальных инжекторных пластин, через которые происходит впрыск смеси топлива и азота. Пластины устанавливаются между карбюратором (дросселем) и впускным коллектором. Самое большое преимущество этих систем состоит в том, что смесь топлива и азота является постоянной, в отличии от "сухих" систем. Недостаток данной системы, напомню для двигателя LT1, заключается в следующем - во впускном коллекторе, из-за конструктивных особенностей, может образовываться топливная лужа, (после отключения системы лужа исчезнет), во-вторых, соленоид азота постоянно подвергается бензиновым испарениям, этот факт , со временем, ухудшит его работу.
Наконец, если давление азота будет слишком большое, это может привести к утечке топливной смеси из некоторых цилиндров.
Поскольку у каждой из рассмотреных систем есть свои недостатки, и если они вас пугают, обратите внимание на систему прямого впрыска азота. В этих системах применяются отдельные форсунки для каждого цилиндра. Эти системы более совершенны, но и более сложны в установке. Но техническое совершенство влияет на стоимость систем. После того, как вы выбрали для себя тип системы, не забудьте обратить внимание на дополнительное оборудование, как правило, без определенных принадлежностей, эксплуатация системы не приносит должного удовольствия.

Топливная система

На мой взгляд, одна из проблем при применении впрыска азота - бедная топливная смесь, данная проблема относится и к применению турбин и нагнетателей в двигателе. Как правило, для систем мощностью до 100 л.с. производительность штатного бензонасоса является вполне достаточной.
Для более мощных систем необходимо использовать специальный топливный насос или поставить дополнительный. Такая переделка топливной системы позволит застраховать ваш двигатель от разрушения, вследствии падения топливного давления до критического уровня. Чистый топливный фильтр - другой важный момент. Хотя я не слышал о моторе, который взорвался от загрязненного топливного фильтра. Но, незабывайте об этом. Если ваша система настроена минимум на 150 - 200 л.с., я уже не говорю о более мощных, желательны более кардинальные изменения топливной системы, например, замена топливной линии на линию с большим проходным сечением трубок.

Воспламенение

Следующий важный вопрос - система воспламенения. Двигатели с установленной системой впрыска азота требуют определенных изменений в системе зажигания. Например, использование "холодных" свечей или установка меньшего угла зажигания.
Стандартные свечи, используемые на LT1, мало приспособлены для работы с системой впрыска азота. Платиновые свечи LT1, имеют тенденцию сохранять высокую температуру, что может привести к взрыву при использовании азота. Кроме того, зазор свечи должен быть установлен, примерно, 035 для того, чтобы при воспламенении смеси, искра не гасла. Я не собираюсь рекомендовать использовать именно такой зазор, у каждого свои предпочтения, однако, свечи не должны быть платиновыми, и зазор не должен превышать 035. В зависимости от мощности системы впрыска, могут быть необходимы более "холодные" свечи.
Сокращение времени воспламенения - другой важный фактор при использовании впрыска азота. Я слышал две причины для этого утверждения (но я не могу подтвердить или отрицать данное утверждение), во-первых - это уменьшает шанс удара (детонации), во-вторых - для более быстрого сгорания топливной смеси, для получения максимальной мощности. Угол опережения зажигания должен быть уменьшен на 1-1,5 градуса для каждых дополнительных 50 л.с. Кроме того, нужно быть очень осторожным в использовании чип-тюнинга.
Естественно, можно пойти дальше, и модернизировать блок управления зажиганием, катушку и т.д. Но для большинства систем (исключая очень мощные) данных рекомендаций достаточно.

Установка

Теперь перейдем к реальной работе. После того как вы преобрели систему, настало время ее установки. Я собираюсь рассказать вам об установкt "мокрой" системы, т.к. именно с такой системой я наиболее знаком в эксплуатации. Однако, большинство рекомендаций подходит и к установке "сухой" системы.
Сначала о баллоне. Азотистый баллон состоит из 4 частей: непосредственно баллон, клапан, "сдувающийся" клапан давления и газовая трубка. Я думаю, что устройство и принцип действия баллолна и клапана довольно очевидны, я не буду останавливаться на их устройстве.
"Сдувающийся" клапан - устройство безопасности (обычно располагается непосредственно напротив главного фитинга), который предназначен для того, чтобы открыться, если давление в баллоне превышает номинальное (приблизительно 1600-1800 Psi).
Газовая трубка - представляет собой слегка изогнутую трубку, которая находится внутри баллона, и обеспечивает подачу азота к клапану. Трубка немного изогнута около основания баллона. Очень важен угол установки баллона в автомобиле. Баллон должен быть установлен таким образом, чтобы трубка была всегда погружена в азот.
Изготовители обеспечивают необходимыми кронштейнами и инструкцией по установке баллона. Обычно градус установки составляет 15 градусов.
После того, как баллон и кронштейны установлены, следующая задача - монтаж газовой магистрали к двигателю. Хотя самый легкий путь провести газовую магистраль через салон, такой способ не очень безопасен. Если произойдет разрыв линии, азот может причинить серьезные ожоги, надо помнить, что азот при выбросе в атмосферу переходит в газообразное состояние. Я выбрал путь установки магистрали через левый лонжерон рамы. Хорошим устройством, обеспечивающим дополнительную безопасность (хотя это ни в коем случае не обязательно) является дополнительный соленоид азота, параллельный основному. Таким образом при засорении первого соленоида система останется работоспособной еще некоторое время, хотя очень непродолжительное. Для "мокрых" систем впрыска азота требуется вмешательство в штатную топливную систему. К счастью, это легко делается на LT1. Я просто повысил сечение топливной магистрали, заменив трубки на аналогичные, но большего сечения. Далее я установил дополнительный топливный насос между бензобаком и топливным фильтром. Такая переделка топливной системы сделала топливный поток оптимальным для системы впрыска азота мощностью в 150 л.с. Именно на такую дополнительную мощность настроена моя система.
Для "мокрых" систем, смесь азота и топлива впрыскивается через специальные пластины, которые устанавливаются между карбюратором и впускным коллектором или при помощи форсунок, которые устанавливаются во впускной коллектор, в зависимости от количества цилиндров. Когда система активизирована, множество маленьких отверстий в каждой форсунке распыляют туман смеси топлива и азота в коллектор.
Форсунки Fogger выполняют ту же самую функцию, но делают это через единственное отверстие, которое распыляет "туман" перед дроссельной заслонкой.
В системе, которую я установил, применяется пластина. На LT1 она просто устанавливается между впускным коллектором и дросселем. Монтаж, как предполагалось, очень прост - нужно просто снять заслону, установить пластину, используя специальные прокладки, и собрать узел.
Затем нужно установить соленоиды и газовую магистраль. В тех комплектах систем впрыска азота, которые разработаны для определенных моделей двигателей, все необходимые кронштейны присутствуют. В других случаях нужно проявить немного изобретательности и сконструировать пару кронштейнов для соленоидов. Я был вынужден сделать пару скобок, заказать некоторые дополнительные фитинги, и изменить длину нескольких газовых линий, которые шли с комплектом (они были слишком длинны).
Самая большая проблема,с которой я столкнулся, заключалась в поиске места под капотом для установки соленоидов, я не хотел устанавливать их на виду Я нашел такое место за впускным коллектором со стороны пассажира. Соленоиды были закреплены на кронштейнах к кузову. Поверьте, требуется время, для самостоятельной правильной установки системы. Установка газовых шлангов под капотом заняла немного времени и сил, в конце я покрасил шланги в черный цвет, таким образом определить наличие установленной системы стало проблематичным, чего я и добивался. При монтаже фитингов и газовых шлангов необходимо принять во внимание несколько вещей: на резьбовых соединениях не используйте ленту для герметизации соединений, лучший выбор - тефлоновый герметик. Используйте небольшое количество герметика. Имеется следующая причина для такого утверждения - частицы ленты могут засорить соленоид. А это неприятно. Во - вторых при монтаже дополнительных металлических газовых и бензиновых трубок будьте осторожны, когда будете их гнуть, а делать это придется обязательно. В конце концов используйте специальный инструмент. Установка соленоидов предельно проста и сводится к стыковке клапанов к газовой магистрали.
В базовой системе впрыска азота используются только два соленоида (топливный и газовый), подключенных параллельно выключателю. Лично я рекомендовал бы использовать два выключателя. Первый - основной, активизирующий систему, второй - дополнительный выключатель дроссельной заслонки - датчик, который следит за положением дросселя и позволяет включить сиситему только при полностью открытой заслонке. Соленоиды должны быть защищены предохранителем. Как правило, топливные и азотистые соленоиды потребляют меньше 15 amps, так что подобрать предохранитель труда не составит. Наконец о проверке установленной системы. В принципе, проверка системы сводиться к нормальной работе соленоидов. Именно на эти два клапана следует обратить особое внимание. Перед эксплуатацией системы, вы должны проверить все ли правильно смонтировано и все ли работает как надо, обязательно удостоверьтесь нет ли течей топлива и т.д. Чтобы проверить работу топливного соленоида, закройте клапан баллона, активизируйте систему, и включите датчик дроссельной заслонки (не сам дроссель а дополнительный выключатель). Если соленоид функционирует нормально, то двигатель будет работать с перебоями, и вполне может заглохнуть из-за дополнительного количества топлива. Проверить азотистый соленоид почти также легко.Так как работа газового соленоида намного напряженнее, чем топливного, при включении вы должны услышать шелчок, означающий открытие и закрытие клапана.

Настройка

После того, как установка выполнена и все работает нормально, требуется настроить систему. Перед попыткой настроить азотистую систему, я настоятельно рекомендую отрегулировать штатную топливную систему. Данная регулировка сводится к настройке правильного образования топливно-воздушной смеси. Один из главных пунктов настройки - оптимальное давление баллона. Ваш баллон должен обеспечивать необходимое давления для павильной работы системы впрыска азота. Большинство систем впрыска рассчитаны на давление в баллоне, примерно 1000PSI. Если давление соответствует данному параметру, система функционирует с максимальной мощностью, если давление превышает номинальное, это повлияет на топливно-воздушную смесь, она будет слишком бедной, и потеря мощности гарантирована, снижение давления дает обратный эффект - смесь богаче.
Хороший метод контроля образования топливно-воздушной смеси - использования газоанализатора. Так же я много слышал от профессионалов о контроле смеси с помощью измерения температуры выхлопных газов ( у бедной смеси выхлоп более горячий), но для меня намного удобнее использовать газоанализатор. Существуют несколько способов настроить образование топливно-воздкшной смеси при использовании "мокрой" системы впрыска азота. Вы можете менять топливные и газовые жиклеры. Если смесь богатая, используйте меньший размер топливного жиклера (или, соответственно, больший размер газового жиклера). В случае бедной топливно-воздушной смеси, устанавливайте жиклер для азота меньшего размера, а жиклер для топлива - большего. Кроме того, если в вашей системе возможна настройка топливного регулятора, вы можете настроить подачу топлива с помощью регулировок.

Дополнительные компоненты

Если вы - подобно мне увлеклись использованием азота для получения дополнительной мощности, то обязательно захотите дополнить вашу систему дополнительными компонентами, часто оказывающимися довольно полезными. Далее я расскажу о компонентах, которые добавил к своей системе и о компонентах, котроые приобрету в ближайшее время.
Сначала о приборах, повышающих безопасность использования системы. Выключатель системы, который реагирует на количество оборотов. Это приспособление чрезвычайно полезно, принцип работы состоит в следующем: выключатель отключит подачу азота при падении оборотов до заданного минимума. На сколько я слышал, применение данного выключателя полезно еще и тем, что активизировать систему впрыска азота можно, когда обороты двигателя достигают отметки не ниже 2500.
Другая хорошая вещь - прибор, снимающий ограничение скорости ( такие фирмы как MSD, Crane, Accell, Jacobs, и другие продают их в комплекте систем зажигания.) У LT1 ограничитель максимальной скорости отключает топливоподачу, но при использовании азота, это может привести к недостаточному количеству топлива, которое негативным образом скажется на вашем двигателе, и еще, при таком условии подачи топлива, смесь обеднеет, ограничитель способен отключить искру от определенных цилиндров двигателя, что в свою очередь, приведет к несгоревшей топливно-азотистой смеси, которая воспламениться в глушителе ( это намного лучше, чем прогоревший поршень).
Наконец, я также рекомендовал бы использовать датчик давления топлива. Работа такого датчика состоит в контроле давления топлива, и если давление упадет до критического минимума, выключатель отключит систему, это предотвратит поломку двигателя и избавит вас от последующего ремонта. Реакция выключателя - молниеносна. На одну особенность "мокрых" систем следует обратить внимание при монтаже топливного соленоида: дело в том, что когда топливный соленоид открывается, неизбежно небольшое снижение давления, т.к. топливу необходимо заполнить магистраль от соленоида до форсунки, поэтому необходимо максимально сократить длину топливной магистрали ведущей от соленоида до инжектора.
Теперь о модернизации системы. Одно из наиболее полезных (по-моему мнению) приобретений, должен стать нагреватель баллона. Мы уже знаем, что наиболее распространенное давление баллона составляет, примерно, 1000 Psi (если давление ниже указанного, происходит образование богатой смеси). Оптимальная температура баллона, необходимая для поддержания необходимого давления - это 85 градусов по Фаренгейту.
Электрический нагреватель баллона - небольшой гибкий кожух, который монтируется на баллоне. Как правило, более мощные нагреватели комплектуются регулятором температуры. Материал из которого сделан нагреватель, также способствует сохранению темпа уже нагретого баллона.
Другое полезное приспособление (еще раз, по-моему мнению) - клапан чистки баллона. Клапан чистки баллона представляет собой соленоид с маленькой трубочкой, такой клапан монтируется рядом с соленоидом азота и выпускает из системы воздух. Данный клапан активизируется в ручную с помощью специального выключателя. Такая операция предотвращает задержку при активации системы впрыска азота из-за возможности возникновения воздушного пузыря.
Один из моих любимых дополнительных компонентов системы - программируемый контроллер. Эта штуковина позволяет получить полный контроль над мощностью вашей системы. В зависимости от заданной программы вы регулируете подачу азота в зависимомти от условий трассы, времени и т.д.
И последнее - дистанционный клапан баллона (очень удобное устройство). Такой клапан позволяет открывать или закрывать подачу азота дистанционно. Данное устройство не заменяет стандартный клапан баллона, он работает параллельно.
Далее, какие электронные компоненты я добавил в свою систему (под руководством моего друга Eric*а Danstrom*а). Большинство компонентов используются для удобства управления системой, но многие - повышают уровень безопасности впрыска азота. Некоторые из дополнительных компонентов, которые я установил:
Датчик дроссельной заслонки (выключатель)

Средства управления :
Програмируемый контроллер
Клапан чистки баллона
Дистанционный клапан баллона
Нагреватель баллона
Топливный насос
Датчики давления азота и топлива


Я думаю, что общая репутация системы впрыска азота , как опасная, является ложной. По-моему мнению, такую репутацию азотистые системы получили из-за их сравнительной небольшой стоимости ( в сравнении с другими способами прибавки такой же мощности мотору. Мое мнение - если вы аккуратно используйте систему и имеете соответствующие устройства безопасности, системы впрыска азота столь же безопасны, как и другие варианты доработки двигателя (турбины, механические нагнетатели и пр.). Всех неприятностей, о которых я слышал, связанных с применением впрыска азота, можно было избежать, если бы соблюдались необходимые правила предосторожности.
Есть неоспоримая выгода при применении азота - возможность активировать систему тогда, когда вам это нужно, в остальное время эксплуатируя автомобиль в привычном режиме, тем самым ограничивая нагрузку на двигатель.

Matt Paul (США)

Склонность к агрессивному стилю в оформлении экстерьера авто сейчас вряд ли кого удивит.
Не знаю, как другие, а я люблю машины с грозным видом. А как его добиться?

Хороший вопрос. И много вариантов ответа! Изготовить бампер соответствующей конструкции, поменять оптику, решетку. Короче творить с внешностью все на что сил, мозгов, средств и времени хватит. Как правило, последних двух всегда в недостатке.
Но ручки чешутся Начать с чего то надо.
Представьте человека с серьезной внешностью. Первое что в голове всплывает – нахмуренные брови. Машина от этого далеко не ушла.
Честно говорю, не знаю продаются ли так называемые «реснички» в магазинах тюнинга, или не замечал, или мимо глаз пропускал, короче каюсь.
Но вот изготовление таких безделушек происходит вполне быстро.
Итак нам потребуется защита передней оптики, паяльник, и инструмент который в силах распилить эту защиту нафик Первое что делаем это определяемся с формой. Думаю дальше все понятно см фото:

ремонт

ремонт


Первая небольшая проблема с которой столкнулся это изгиб который разграничивает блок поворотника и блок фары:

ремонт


Паяльник в руки!!! И чем мощней тем лучше. И выравниваем с внутренней стороны эту неровность постепенно и плавно водя по поверхности. Очень важно именно постепенно нагревать, и плавно водить паяльником чтобы теплота равномерно действовала на поверхность защиты, эээээ…..т.е. остатков защиты
Иначе можно испортить.
Выровняли! Уже появляются начертания. Теперь в руки напильник и обрабатываем края, (это уж по силам рассчитывайте, или шаблон заранее какой нить соорудите, или бегайте к машине примеряйте, фару снимите и прикладывайте, кому как удобнее затем наждачной бумагой выводим все до конца и обрабатываем поверхность, чтоб стала ровной но не идеально гладкой, дальше прогрунтовать и покрасить.

title


Итак вот они наши самоделки после покраски и установки, все реснички что ниже на фотках как говориться Hand Made ? ни какого фабричного….

ремонт

ремонт


Вот еще один пример изготовления из защиты.



ремонт

ремонт

ремонт


Вот еще


ремонт


К слову сказать та каляска что с права моя….сбылась мечта, купил наконец то себе машину… руки будет о что почесать ? теперь, правда после сессии…

scc.pnz.ru

Решение об установке тыловой акустики было принято в связи с желанием улучшить звук в машине и в то же время нежеланием тратиться на усилитель и сабвуфер.

В качестве колонок для тыла были выбраны 16 см трехполосные коаксиалы DLS 136mk2. Выбор марки был подсказан удачным прошлогодним опытом инсталляции фронтальной акустики DLS PS-5 и хорошим звуком при прослушивании их на стенде. Также в пользу этих колонок была и их цена - 1400 руб. на горбушке. Итак, колонки были куплены и надо было их ставить.

Материалы

Первым этапом была покупка необходимых материалов. На строительном рынке были подобраны и куплены 2 обрезка 7-мм фанеры размером 140 x 50 см и хороший столярный клей.
акустическая полка

Этим клеем клеился дополнительный усиливающий слой на обшивке передних дверей при установке фронтальной акустики. Детали склеиваются намертво - отодрать потом невозможно. Склеенным изделием можно пользоваться уже через час.

Затем были прикуплены лист вибропласта 90 x 60 см для виброизоляции полки кузова и кусок карпета 140 x 100 см для декоративной отделки полки и закрытия динамиков.
акустические полки ваз

Инструменты

Из инструмента для построения полки совершенно необходим электролобзик. Пилить толстую фанеру обычной пилой занятие весьма нудное. Также крайне желательно наличие дрели на аккумуляторе, если нет гаража с розеткой. И то и другое у меня было и работа началась.

Аудиоподготовка

Следующим этапом была аудиоподготовка. Скажем сразу, что в жигулях аудиоподготовка как спереди, так и сзади отсутствует как класс. Поэтому делать все надо самому.

Первое, что было сделано это были проложены акустические провода назад. Проложены вдоль туннеля пола по разные его стороны.

Затем на полке кузова были размечены отверстия под динамики. С целью расширения стереобазы места для отверстий были выбраны так, чтобы они были максимально удалены от центра к задним стойкам. Отверстия намечены, теперь их надо вырезать. Как показал дальнейший опыт, для вырезания отверстий без демонтажа стекла надо запастись компактными, качественными ножницами по металлу. Т.е. дрелью просверлить несколько отверстий рядом и ножницами вырезать по линии. Металл там мягкий и режется легко. Я начал вырезать лобзиком, пилки по металлу к нему прилагались. Из-за наклона стекла, выштамповок на полке задка и близости к стойкам работать лобзиком было весьма неудобно. Сначала сломалась одна пилка, потом другая. Дальше пришлось вырезать ножницами. Нечто, что можно с натягом назвать ножницами по металлу у меня имелось и последнее отверстие я дорезал ими. Далее все это хозяйство было обклеено вибропластом и я принялся за саму полку.
titletitletitle

акустическая полка 2109акустические полки 2110акустические полки изготовление

Акустическая полка

Первое, что надо сделать это разметить шаблон полки. В качестве лекала была взята "декоративная" обивка полки задка. Далее с помощью линейки и рулетки, путем различных примерок он был подкорректирован, были отмечены отверстия под динамики. Разметка шаблона, пожалуй, самый сложный и ответственный момент во всей работе. С размерами лучше немного перебдеть, чем недобдеть. Подрезать потом всегда можно, а если отрезал лишнего, то придется делать все заново. Мне повезло, идеально совпали отверстия под динамики, по длине полку пришлось обрезать по 0.5 см с каждой стороны и по ширине по 1.5 см с каждой из сторон. Листа фанеры было 2, как писалось выше, и второй лист был выпилен по образу и подобию подогнанного первого листа. После чего листы были склеены. Клей мазался по всей поверхности листов. В результате получилась совершенно монолитная доска толщиной 15 мм. Однако, был обнаружен просчет, заключавшийся в том, что установленный в свое место, динамик сильно выступал над плоскостью полки. Это затрудняло аккуратную обтяжку полки карпетом и делало динамики хорошо заметными для пионеров. Пришлось докупить еще один лист фанеры, выпилить его по форме почти готовой полки, а под динамики выпилить отверстия большего диаметра. Это видно на фото ниже.
акустическая полкаакустическая полкаакустическая полка

схема акустической полки акустическая полка ваз 2109 акустическая полка 21099

Для того, чтобы полка плотно прилегала к кузову было решено на нижнюю сторону полки в определенных местах нанести чего-нибудь плотного, но в то же время деформируемого. В качестве этого "чего-нибудь" был попробован макрофлекс, размоченный в воде. На первых фото внизу белое это - макрофлекс. Макрофлекс выдавливался в емкость с водой и размешивался там лопаткой. Затем, этой лопаткой наносился на полку. Размоченный макрофлекс после застывания существенно прочнее чем когда просто выдавливается из баллончика и застывает. Далее застывший макрофлекс подрезался ножом уже по месту.

Итак, полка окончательно подогнана, динамики вмонтированы. Осталось обшить ее карпетом и установить на место. Карпет был вырезан по размерам и форме полки + 5 см от каждого края. Края ткани загибались и крепились к торцам полки П-образными скрепками с помощью специального пистолета.
акустическая полкаакустическая полка

акустическая полка 2115 акустическая полка ваз 2115 ваз 2110 полка акустическая акустическая полка 2112

Впечатления от сделанного. То, что было сделано, сделано было не зря. Звук в машине значительно улучшился, стал гораздо более мощным, насыщенным и объемным.


Керамическое сцепление Какой русский не любит быстрой езды? Стрелка тахометра взлетает в правый сектор шкалы, бросок сцепления, визг шин...

И к дыму от покрышек добавляется едкий запах издыхающего сцепления. ТЕМ, кто спокойно ездит на стандартных вазиках в „стандартных“ режимах в этой ситуации можно только позавидовать. Один раз за 50-60 тысяч километров они меняют серийное сцепление на такое же и не знают никаких проблем. Совсем другое дело, когда у вас, к примеру, Mitsubishi Lancer Evolution: здесь достаточно одного неосторожного движения педали газа на полувыжатом сцеплении, чтобы безумный турбомотор превратил его в облако едкого дыма. Впрочем, и на вазиках ездят по-разному: одни таскают тяжелый прицеп по горным дорогам, другие гоняются в ралли, третьи просто ездят по шоссе, но под капотом мечется „форсмотор“. В любом случае „по сцеплению“ нужен хороший запас. „Знаем, знаем, — скажут подкованные читатели. — Единственный в этом случае выход — использование металлокерамических дисков. Недаром спортсмены именно так и поступают. Дело, конечно, хорошее, так ведь и стоят они очень дорого…“ Однако и с первым, и, самое главное, со вторым утверждением можно поспорить. Откроем, к примеру, каталог американской фирмы ClutchNet. Что интересного? Конечно, ассортимент. Имеются и диски, и корзины, и даже маховики практически для любых марок автомобилей. В том числе, между прочим, и для вазиков: для „десятки“ (200 мм) и „девятки“ (190 мм). Это как раз понятно — рынок, конкуренция и все такое. А что еще? Помимо „традиционной“ металлокерамики ClutchNet предлагает диски из других материалов. Вот, скажем, диски с накладками Fiber Carbon, которые состоят из керамики, углеродного волокна и кевлара. По своим фрикционным качествам они напоминают обыкновенные органические, но передают на 10% больший крутящий момент без увеличения прижимной силы корзины. Это значит, что такое сцепление будет срабатывать, как и традиционное, плавно, но увеличит износостойкость механизма в 2-4 раза. Это отличный вариант для слегка „подзаряженного“ автомобиля: такой диск можно смело вставлять в стандартную корзину. У дисков ClutchNet бывают и цельнокевларовые накладки — они легко выдерживают жесткие температурные режимы, практически не изнашивают поверхности маховиков и корзин и сами служат очень долго, но требуют тщательной обкатки на протяжении примерно 10 000 км. Другой экзотический вариант —медьсодержащие накладки Copper. Они имеют очень высокий коэффициент трения и выдерживают не менее высокие температурные режимы. Однако они очень агрессивны и сильно изнашивают маховики и корзины. Впрочем, в стрит- и драгрейсинге, для которых они были разработаны, это не имеет решающего значения. И, наконец, металлокерамика. Такие диски у CluthNet имеют больше всего вариантов: они могут быть трех-, четырех- и шестилепестковыми. Их назначение —экстремальная эксплуатация на предельных температурах и нагрузках. Говорят, что сцепление этой марки уже испытывали российские раллисты — сжечь его за два дня целенаправленных попыток не удалось даже на боевой Subaru Impreza Turbo. Ресурс и выносливость это хорошо. Но металлокерамика знаменита своими резкими включениями. Не помешает ли это при городской езде? Оказывается, нет: специально для этих целей разработан вариант с пружинным демпфером E-Z Lоск. Кстати, и прочие типы дисков (кевларовые, „медные“, Fiber Carbon) представлены в двух вариантах: демпфированном городском и жестком гоночном, который обеспечивает предельно быстрое замыкание. В общем, ассортимент широкий. А как насчет цен? Здесь нас ждет самое приятное: керамический шестилепестковый диск для ВАЗов стоит всего 160 долларов. Специальное предложение? Нет. Такого же типа диск для Mitsubishi Lancer Evolution обойдется лишь на пару десятков долларов дороже. А полный комплект с фирменной усиленной корзиной для EVO „потянет“ от силы на 550-600 долларов. Впрочем, для производителей такого рода продукции политика CluthNet выглядит необычно: необязательно платить три цены за сцепление, если у вас Porsche 911.



[ Назад | Начало | Наверх ]

По вопросам организации обращайтесь по телефону: 8-902-269-09-37 (Сергей)
По вопросам создания сайтов в Екатеринбурге и области: 8-965-508-13-38 (Александр)
The release is prepared by exstrim-bog.ru target="index">Екстремальные гонки
The release is prepared by exstrim-bog.ru target="index">Екстремальные гонки