Фотогалерея

, Гость!

Ник:
Пароль:


Войти через другие сервисы. Самый удобный и проверенный способ моментально стать пользователем нашего портала.

Статистика

Понедельник783
Вторник289
Среда539
Четверг400
Пятница417
Суббота422
Воскресенье431
Сейчас online:17
Было всего:4980364
Рекорд:4870

Кто онлайн:

Рейтинг сайта

УралWeb Рейтинг@Mail.ru

Яндекс.Метрика

HotLog Яндекс цитирования

Интересно

^^^Здесь может быть ваше фото^^^


Поиск
Поиск


У административно арестованного произошел приступ белой горячки, и он скончался на руках медиков.

Настоящая драма разыгралась прошлой ночью в изоляторе временного задержания Кушвы. Находившиеся в нем административно-задержанные и арестованные в течение получаса слушали доносившиеся из одной из камер крики и топот ног — арестованный на пять суток гражданин ловил чертей и врагов и крушил казенное имущество. С правонарушителем приключился приступ белой горячки.
Как сообщили JustMedia в пресс-службе ГУВД по Свердловской области, галлюцинации настигли административно арестованного гражданина около трех часов, в связи с чем он стал представлять опасность и для себя, и для окружающих, и только своевременное вмешательство сотрудников изолятора позволило избежать тяжелых последствий для пятерых граждан, находившихся в той же камере.
43-летний житель поселка Верхняя Тура был задержан нарядом ППСМ еще 27 апреля. Стражам порядка он был хорошо знаком — злостный дебошир в этом году уже получил по приговору суда полтора года условно за истязания собственной жены. После составления административного протокола в Верхнетуринском ОВД он был обязан явкой на следующий день в мировой суд Кушвы. Однако у гражданина продолжался запой, поэтому в суд он не явился. В результате он был доставлен милиционерами для вынесения судебного решения принудительно утром 29 апреля. Мировым судьей 3-го участка Кушвы было вынесено постановление о привлечении гражданина к административному аресту на пять суток. Так, дебошир в 16.00 того же дня оказался в камере кушвинского ИВС, причем трезвый, — это засвидетельствовано фельдшером изолятора, как и то, что никаких жалоб на состояние здоровья доставленный не высказывал, нарушений в функционировании его организма выявлено также не было.
Однако ближе к одиннадцати ночи мужчина пожаловался милиционерам на перебои сердечного ритма и боль в груди, головную боль, головокружение и озноб, в связи с чем сразу же была вызвана бригада скорой медицинской помощи, которая с ходу диагностировала алкогольный абстинентный синдром и, измерив артериальное давление, — гипертонию II степени. Как сообщили в пресс-службе ГУВД, врачи оказали пациенту весь объем медицинской помощи.
Отметим, что для тяжелой формы абстинентного синдрома, которой страдал задержанный, характерны и алкогольные психозы, развивающиеся постепенно. Организм алкоголика просто требует спиртного и, не получая его, дает серьезный сбой в физическом и душевном состоянии.
Так и произошло в кушвинском ИВС. Примерно около трех часов ночи гражданину стали мерещиться разные враждебно настроенные люди, от которых он, оторвав от стены вешалку и забравшись на возвышение в камере, начал «держать круговую оборону». Этим он изрядно перепугал своих соседей. Те стали стучать в дверь и звать милиционеров. Помощь пришла сразу. Пятеро находившихся в опасной близости от обезумевшего человека мужчин были выведены сотрудниками изолятора и препровождены в другие помещения ИВС. Явно находившемуся в критическом состоянии гражданину вновь вызвали «скорую».
Однако медики не смогли приблизиться к больному, который грозил применить оторванную вешалку ко всем злодеям, что близко подойдут, осыпая невидимых никому, кроме него, врагов, матерной бранью.
Милиционерам пришлось применить наручники и вытащить упирающегося арестованного в кабинет, где, наконец, врачи начали приводить его в чувство.
Внезапно мужчине стало плохо и, несмотря на проводимый приехавшей бригадой комплекс реанимационных мероприятий, он скончался. Врач зафиксировал время смерти в 4.00 утра 30 апреля.
Днем было проведено вскрытие. Предварительный диагноз — алкогольная микрокардиопатия, то есть сердечная недостаточность. Попутно выяснилось, что у него сломано два ребра. Скорее всего, это произошло во время непрямого массажа сердца и искусственной вентиляции легких, которые делали сотрудники скорой помощи.
По данному факту начальником ГУВД по Свердловской области генерал-лейтенантом милиции Михаилом Никитиным назначена проверка, которую проводят сотрудники отдела организации работы спецучреждений милиции и конвоирования (ООРСУМиК) главка.
Самое ужасное во всей этой истории — о смерти мужчины не пожалела его собственная жена, сказав на это известие лишь одно: «Ну, вот и отмучилась я с ним. Слава Богу!».
В милиции надеются, что это ЧП не станет поводом для некоторых «правозащитников» в очередной раз себя пропиарить, разыграв карту «милицейского произвола».
===========
justmedia.ru
Контуры "левое переднее - правое переднее" и "левое заднее - правое заднее" с использованием штатного регулятора. Используется мною совместно с задними дисковыми тормозами на ВАЗ 21083. (Дополнительно для тех, кто хочет установить задние дисковые тормоза)

ВНИМАНИЕ!


Любое вмешательство в тормозную систему запрещено! Вы должны об этом помнить! Автор снимает с себя любую ответственность в случае возникновения форс-мажорных обстоятельств.

тормозная система

Плюсы схемы.


1.Одинаковые усилия на левых и правых колесах автомобиля.

2.Регулятор начинает регулировать усилие на задних колесах в более широких пределах (он и раньше умел это делать, но только на одном колесе, из-за особенностей устройства)

Минусы схемы.


При отказе контура "левое переднее - правое переднее" эффективность торможения резко падает. Следите за состоянием контура!


Главный тормозной цилиндр.

От ГТЦ отходят 3 трубки 2 вперед, одна - назад.

От первого поршня ГТЦ, который ближе к вакуумному усилителю, отходят трубки на передние колеса. От дальнего - под днище на задние. Лишнюю дырку можно заглушить несколькими способами:

а. Шариком от большого подшипника генератора (25 руб. за подшипник, либо разломать старый) и штуцером от трубки (3-5 руб.). Штуцер желательно сточить почти до резьбы, оставив 2-3 мм.

б. Болтом с медной шайбой.

в. Специальной заглушкой, типа прокачного штуцера. Кому будут нужны - обращайтесь.



Регулятор давления.

На регуляторе глушатся два отверстия - одно с торца, второе рядом с ним - бывшая магистраль "правое переднее - левое заднее" Этого контура больше не будет.



Собираем.

Единственная трубка, которая идет от ГТЦ сажается на единственный вход колдуна, (вход-выход помечены стрелочками, - если кто не знает) на единственный выход колдуна ставится тройник от классики, после тройника трубки на задние колеса. Прокачиваем - наслаждаемся. Желательно использовать все тормозные колодки одной фирмы, либо известных забугорных фирм. Комбинация Lucas спереди, Дафми сзади на (диски АТЕ по кругу ;) привела к невозможности настроить тормоза. Зад не тормозил, потом резко возрастало тормозное усилие и в итоге ранняя блокировка (!!!). Установка колодок АТЕ вместо этого продукта братского украинского народа решило все проблемы.


Требуемые детали:


Трубка тормозная около 20 см - 10 руб. х 1 шт.

Тормозной тройник от классики - 20 руб. х 1 шт.

Оконечник тормозной трубки - 5 руб. х 3 шт.

Подшипник (донор шариков) - 20 руб. х 1 шт.

Жидкость тормозная 1 литр DOT4 - 70 руб.

Системы впрыска закиси азота - определенно один из самых экзотических способов тюнинга двигателя. В этой статье рассказывается о применении систем впрыска, приведены определенные факты, примеры и т.д. Также мы хотим поделится своими ощущениями и опытом использования азота на своем автомобиле.

Нужно заметить, что мнение, высказываемое в этой статье, является субъективным и не претендует на абсолютно правильную позицию.
Сначала несколько напоминаний. Вы должны удостовериться, что ваше транспортное средство находится в хорошем техническом состоянии. Все неисправные детали - изношенные кольца, плохие прокладки, насосы и т.д. - должны быть заменены, иначе вы не получите максимальной прибавки мощности. Если у вас американский автомобиль, например, GM, то помните, что инженеры GM разрабатывали двигатели с максимальным запасом прочности. Обратине особое внимание на трансмиссию, тормоза и шины.

Для начинающих

Что нужно для увеличения мощности двигателя. Главный способ - увеличить подачу воздуха, тем самым сжечь как можно больше топлива. Существует несколько способов для осуществления этой задачи, самый распространенный и известный - использование турбин и механических нагнетателей. Но мы говорим о азоте - впрыск азота тоже способ (и неплохой) сжечь как можно больше смеси.
Впрыск азота решает эту задачу двумя способами. Первый способ имеет меньший эффект в применении и состоит в следующем: азот находится в баллоне под давлением примерно в 1000 Psi в жидком состоянии; при активизации системы азот переходит в газообразное состояние, что способствует понижению температуры воздуха. Тот из вас, кто помнит немного физику, знает, что понижение температуры воздуха повышает его плотность. Типичная система впрыска азота способна понизить температуру поступающего воздуха, примерно, до 60 - 80 градусов F.
Второй способ имеет большую эффективность : окись азота - двухкомпонентна, при нагревании до 572 градусов F нитрооксид расподается на азот и кислород, именно кислород, содержание которого в нитрооксиде чуть ли не в три раза больше, чем в воздухе позволяет сжечь максимальное количество топлива. Впрыск азота имеет и третий, косвеный, способ увеличения мощности: в процессе впрыска повышается давление в цилиндрах двигателя, которое увеличивает эффективность горения смеси.

"Мокрые" и "Сухие" системы

Имеются два основных типа систем впрыска азота. "Мокрая" система, принцип работы которой заключается в подаче топливно-азотистой смеси. "Сухая" система, принцип которой заключается непосредственно в подаче только азота во впускной коллектор. Очевидно, есть преимущества и недостатки обеих систем. Рассмотрим работу "сухой" системы на примере комплекта NOS 5176 и двигателя LT1. Система работает при давлении топлива в 80 psi. Увеличение давления и поддержка постоянной величины в магистрали происходит посредством работы топливного соленоида. При повышенном давлении топливо поступает непосредственно во впускной коллектор. Данная система повышает давление топлива выше нормы именно за счет работы соленоида. Этот тип системы имеет несколько главных преимуществ. Первое - для установки системы не требуется кардинального вмешательства в штатную топливную систему и установки дополнительной магистрали, что облегчает установку. Во вторых, поскольку давление азота в баллоне колеблется, количество поступающего топлива, будет изменяться в том же самом количестве (так как система использует давление азота, чтобы повысить количество сгораемого топлива).
У этой системы есть несколько недостатков (напоминаю, система установлена на LT1). Первое: штатные форсунки могут не выдержать необходимого системе давления в 80 psi, установка комплекта инжекторов Bosch/Ford SVO, может исправить этот недостаток. Во вторых, количество азота, впрыскиваемого в коллектор может меняться, в то время как количество топлива - постоянно. Из-за этого возможен впрыск несбалансированной топливно-воздушной смеси в некоторые цилиндры.

"Мокрые" системы впрыска азота основаны на применении специальных инжекторных пластин, через которые происходит впрыск смеси топлива и азота. Пластины устанавливаются между карбюратором (дросселем) и впускным коллектором. Самое большое преимущество этих систем состоит в том, что смесь топлива и азота является постоянной, в отличии от "сухих" систем. Недостаток данной системы, напомню для двигателя LT1, заключается в следующем - во впускном коллекторе, из-за конструктивных особенностей, может образовываться топливная лужа, (после отключения системы лужа исчезнет), во-вторых, соленоид азота постоянно подвергается бензиновым испарениям, этот факт , со временем, ухудшит его работу.
Наконец, если давление азота будет слишком большое, это может привести к утечке топливной смеси из некоторых цилиндров.
Поскольку у каждой из рассмотреных систем есть свои недостатки, и если они вас пугают, обратите внимание на систему прямого впрыска азота. В этих системах применяются отдельные форсунки для каждого цилиндра. Эти системы более совершенны, но и более сложны в установке. Но техническое совершенство влияет на стоимость систем. После того, как вы выбрали для себя тип системы, не забудьте обратить внимание на дополнительное оборудование, как правило, без определенных принадлежностей, эксплуатация системы не приносит должного удовольствия.

Топливная система

На мой взгляд, одна из проблем при применении впрыска азота - бедная топливная смесь, данная проблема относится и к применению турбин и нагнетателей в двигателе. Как правило, для систем мощностью до 100 л.с. производительность штатного бензонасоса является вполне достаточной.
Для более мощных систем необходимо использовать специальный топливный насос или поставить дополнительный. Такая переделка топливной системы позволит застраховать ваш двигатель от разрушения, вследствии падения топливного давления до критического уровня. Чистый топливный фильтр - другой важный момент. Хотя я не слышал о моторе, который взорвался от загрязненного топливного фильтра. Но, незабывайте об этом. Если ваша система настроена минимум на 150 - 200 л.с., я уже не говорю о более мощных, желательны более кардинальные изменения топливной системы, например, замена топливной линии на линию с большим проходным сечением трубок.

Воспламенение

Следующий важный вопрос - система воспламенения. Двигатели с установленной системой впрыска азота требуют определенных изменений в системе зажигания. Например, использование "холодных" свечей или установка меньшего угла зажигания.
Стандартные свечи, используемые на LT1, мало приспособлены для работы с системой впрыска азота. Платиновые свечи LT1, имеют тенденцию сохранять высокую температуру, что может привести к взрыву при использовании азота. Кроме того, зазор свечи должен быть установлен, примерно, 035 для того, чтобы при воспламенении смеси, искра не гасла. Я не собираюсь рекомендовать использовать именно такой зазор, у каждого свои предпочтения, однако, свечи не должны быть платиновыми, и зазор не должен превышать 035. В зависимости от мощности системы впрыска, могут быть необходимы более "холодные" свечи.
Сокращение времени воспламенения - другой важный фактор при использовании впрыска азота. Я слышал две причины для этого утверждения (но я не могу подтвердить или отрицать данное утверждение), во-первых - это уменьшает шанс удара (детонации), во-вторых - для более быстрого сгорания топливной смеси, для получения максимальной мощности. Угол опережения зажигания должен быть уменьшен на 1-1,5 градуса для каждых дополнительных 50 л.с. Кроме того, нужно быть очень осторожным в использовании чип-тюнинга.
Естественно, можно пойти дальше, и модернизировать блок управления зажиганием, катушку и т.д. Но для большинства систем (исключая очень мощные) данных рекомендаций достаточно.

Установка

Теперь перейдем к реальной работе. После того как вы преобрели систему, настало время ее установки. Я собираюсь рассказать вам об установкt "мокрой" системы, т.к. именно с такой системой я наиболее знаком в эксплуатации. Однако, большинство рекомендаций подходит и к установке "сухой" системы.
Сначала о баллоне. Азотистый баллон состоит из 4 частей: непосредственно баллон, клапан, "сдувающийся" клапан давления и газовая трубка. Я думаю, что устройство и принцип действия баллолна и клапана довольно очевидны, я не буду останавливаться на их устройстве.
"Сдувающийся" клапан - устройство безопасности (обычно располагается непосредственно напротив главного фитинга), который предназначен для того, чтобы открыться, если давление в баллоне превышает номинальное (приблизительно 1600-1800 Psi).
Газовая трубка - представляет собой слегка изогнутую трубку, которая находится внутри баллона, и обеспечивает подачу азота к клапану. Трубка немного изогнута около основания баллона. Очень важен угол установки баллона в автомобиле. Баллон должен быть установлен таким образом, чтобы трубка была всегда погружена в азот.
Изготовители обеспечивают необходимыми кронштейнами и инструкцией по установке баллона. Обычно градус установки составляет 15 градусов.
После того, как баллон и кронштейны установлены, следующая задача - монтаж газовой магистрали к двигателю. Хотя самый легкий путь провести газовую магистраль через салон, такой способ не очень безопасен. Если произойдет разрыв линии, азот может причинить серьезные ожоги, надо помнить, что азот при выбросе в атмосферу переходит в газообразное состояние. Я выбрал путь установки магистрали через левый лонжерон рамы. Хорошим устройством, обеспечивающим дополнительную безопасность (хотя это ни в коем случае не обязательно) является дополнительный соленоид азота, параллельный основному. Таким образом при засорении первого соленоида система останется работоспособной еще некоторое время, хотя очень непродолжительное. Для "мокрых" систем впрыска азота требуется вмешательство в штатную топливную систему. К счастью, это легко делается на LT1. Я просто повысил сечение топливной магистрали, заменив трубки на аналогичные, но большего сечения. Далее я установил дополнительный топливный насос между бензобаком и топливным фильтром. Такая переделка топливной системы сделала топливный поток оптимальным для системы впрыска азота мощностью в 150 л.с. Именно на такую дополнительную мощность настроена моя система.
Для "мокрых" систем, смесь азота и топлива впрыскивается через специальные пластины, которые устанавливаются между карбюратором и впускным коллектором или при помощи форсунок, которые устанавливаются во впускной коллектор, в зависимости от количества цилиндров. Когда система активизирована, множество маленьких отверстий в каждой форсунке распыляют туман смеси топлива и азота в коллектор.
Форсунки Fogger выполняют ту же самую функцию, но делают это через единственное отверстие, которое распыляет "туман" перед дроссельной заслонкой.
В системе, которую я установил, применяется пластина. На LT1 она просто устанавливается между впускным коллектором и дросселем. Монтаж, как предполагалось, очень прост - нужно просто снять заслону, установить пластину, используя специальные прокладки, и собрать узел.
Затем нужно установить соленоиды и газовую магистраль. В тех комплектах систем впрыска азота, которые разработаны для определенных моделей двигателей, все необходимые кронштейны присутствуют. В других случаях нужно проявить немного изобретательности и сконструировать пару кронштейнов для соленоидов. Я был вынужден сделать пару скобок, заказать некоторые дополнительные фитинги, и изменить длину нескольких газовых линий, которые шли с комплектом (они были слишком длинны).
Самая большая проблема,с которой я столкнулся, заключалась в поиске места под капотом для установки соленоидов, я не хотел устанавливать их на виду Я нашел такое место за впускным коллектором со стороны пассажира. Соленоиды были закреплены на кронштейнах к кузову. Поверьте, требуется время, для самостоятельной правильной установки системы. Установка газовых шлангов под капотом заняла немного времени и сил, в конце я покрасил шланги в черный цвет, таким образом определить наличие установленной системы стало проблематичным, чего я и добивался. При монтаже фитингов и газовых шлангов необходимо принять во внимание несколько вещей: на резьбовых соединениях не используйте ленту для герметизации соединений, лучший выбор - тефлоновый герметик. Используйте небольшое количество герметика. Имеется следующая причина для такого утверждения - частицы ленты могут засорить соленоид. А это неприятно. Во - вторых при монтаже дополнительных металлических газовых и бензиновых трубок будьте осторожны, когда будете их гнуть, а делать это придется обязательно. В конце концов используйте специальный инструмент. Установка соленоидов предельно проста и сводится к стыковке клапанов к газовой магистрали.
В базовой системе впрыска азота используются только два соленоида (топливный и газовый), подключенных параллельно выключателю. Лично я рекомендовал бы использовать два выключателя. Первый - основной, активизирующий систему, второй - дополнительный выключатель дроссельной заслонки - датчик, который следит за положением дросселя и позволяет включить сиситему только при полностью открытой заслонке. Соленоиды должны быть защищены предохранителем. Как правило, топливные и азотистые соленоиды потребляют меньше 15 amps, так что подобрать предохранитель труда не составит. Наконец о проверке установленной системы. В принципе, проверка системы сводиться к нормальной работе соленоидов. Именно на эти два клапана следует обратить особое внимание. Перед эксплуатацией системы, вы должны проверить все ли правильно смонтировано и все ли работает как надо, обязательно удостоверьтесь нет ли течей топлива и т.д. Чтобы проверить работу топливного соленоида, закройте клапан баллона, активизируйте систему, и включите датчик дроссельной заслонки (не сам дроссель а дополнительный выключатель). Если соленоид функционирует нормально, то двигатель будет работать с перебоями, и вполне может заглохнуть из-за дополнительного количества топлива. Проверить азотистый соленоид почти также легко.Так как работа газового соленоида намного напряженнее, чем топливного, при включении вы должны услышать шелчок, означающий открытие и закрытие клапана.

Настройка

После того, как установка выполнена и все работает нормально, требуется настроить систему. Перед попыткой настроить азотистую систему, я настоятельно рекомендую отрегулировать штатную топливную систему. Данная регулировка сводится к настройке правильного образования топливно-воздушной смеси. Один из главных пунктов настройки - оптимальное давление баллона. Ваш баллон должен обеспечивать необходимое давления для павильной работы системы впрыска азота. Большинство систем впрыска рассчитаны на давление в баллоне, примерно 1000PSI. Если давление соответствует данному параметру, система функционирует с максимальной мощностью, если давление превышает номинальное, это повлияет на топливно-воздушную смесь, она будет слишком бедной, и потеря мощности гарантирована, снижение давления дает обратный эффект - смесь богаче.
Хороший метод контроля образования топливно-воздушной смеси - использования газоанализатора. Так же я много слышал от профессионалов о контроле смеси с помощью измерения температуры выхлопных газов ( у бедной смеси выхлоп более горячий), но для меня намного удобнее использовать газоанализатор. Существуют несколько способов настроить образование топливно-воздкшной смеси при использовании "мокрой" системы впрыска азота. Вы можете менять топливные и газовые жиклеры. Если смесь богатая, используйте меньший размер топливного жиклера (или, соответственно, больший размер газового жиклера). В случае бедной топливно-воздушной смеси, устанавливайте жиклер для азота меньшего размера, а жиклер для топлива - большего. Кроме того, если в вашей системе возможна настройка топливного регулятора, вы можете настроить подачу топлива с помощью регулировок.

Дополнительные компоненты

Если вы - подобно мне увлеклись использованием азота для получения дополнительной мощности, то обязательно захотите дополнить вашу систему дополнительными компонентами, часто оказывающимися довольно полезными. Далее я расскажу о компонентах, которые добавил к своей системе и о компонентах, котроые приобрету в ближайшее время.
Сначала о приборах, повышающих безопасность использования системы. Выключатель системы, который реагирует на количество оборотов. Это приспособление чрезвычайно полезно, принцип работы состоит в следующем: выключатель отключит подачу азота при падении оборотов до заданного минимума. На сколько я слышал, применение данного выключателя полезно еще и тем, что активизировать систему впрыска азота можно, когда обороты двигателя достигают отметки не ниже 2500.
Другая хорошая вещь - прибор, снимающий ограничение скорости ( такие фирмы как MSD, Crane, Accell, Jacobs, и другие продают их в комплекте систем зажигания.) У LT1 ограничитель максимальной скорости отключает топливоподачу, но при использовании азота, это может привести к недостаточному количеству топлива, которое негативным образом скажется на вашем двигателе, и еще, при таком условии подачи топлива, смесь обеднеет, ограничитель способен отключить искру от определенных цилиндров двигателя, что в свою очередь, приведет к несгоревшей топливно-азотистой смеси, которая воспламениться в глушителе ( это намного лучше, чем прогоревший поршень).
Наконец, я также рекомендовал бы использовать датчик давления топлива. Работа такого датчика состоит в контроле давления топлива, и если давление упадет до критического минимума, выключатель отключит систему, это предотвратит поломку двигателя и избавит вас от последующего ремонта. Реакция выключателя - молниеносна. На одну особенность "мокрых" систем следует обратить внимание при монтаже топливного соленоида: дело в том, что когда топливный соленоид открывается, неизбежно небольшое снижение давления, т.к. топливу необходимо заполнить магистраль от соленоида до форсунки, поэтому необходимо максимально сократить длину топливной магистрали ведущей от соленоида до инжектора.
Теперь о модернизации системы. Одно из наиболее полезных (по-моему мнению) приобретений, должен стать нагреватель баллона. Мы уже знаем, что наиболее распространенное давление баллона составляет, примерно, 1000 Psi (если давление ниже указанного, происходит образование богатой смеси). Оптимальная температура баллона, необходимая для поддержания необходимого давления - это 85 градусов по Фаренгейту.
Электрический нагреватель баллона - небольшой гибкий кожух, который монтируется на баллоне. Как правило, более мощные нагреватели комплектуются регулятором температуры. Материал из которого сделан нагреватель, также способствует сохранению темпа уже нагретого баллона.
Другое полезное приспособление (еще раз, по-моему мнению) - клапан чистки баллона. Клапан чистки баллона представляет собой соленоид с маленькой трубочкой, такой клапан монтируется рядом с соленоидом азота и выпускает из системы воздух. Данный клапан активизируется в ручную с помощью специального выключателя. Такая операция предотвращает задержку при активации системы впрыска азота из-за возможности возникновения воздушного пузыря.
Один из моих любимых дополнительных компонентов системы - программируемый контроллер. Эта штуковина позволяет получить полный контроль над мощностью вашей системы. В зависимости от заданной программы вы регулируете подачу азота в зависимомти от условий трассы, времени и т.д.
И последнее - дистанционный клапан баллона (очень удобное устройство). Такой клапан позволяет открывать или закрывать подачу азота дистанционно. Данное устройство не заменяет стандартный клапан баллона, он работает параллельно.
Далее, какие электронные компоненты я добавил в свою систему (под руководством моего друга Eric*а Danstrom*а). Большинство компонентов используются для удобства управления системой, но многие - повышают уровень безопасности впрыска азота. Некоторые из дополнительных компонентов, которые я установил:
Датчик дроссельной заслонки (выключатель)

Средства управления :
Програмируемый контроллер
Клапан чистки баллона
Дистанционный клапан баллона
Нагреватель баллона
Топливный насос
Датчики давления азота и топлива


Я думаю, что общая репутация системы впрыска азота , как опасная, является ложной. По-моему мнению, такую репутацию азотистые системы получили из-за их сравнительной небольшой стоимости ( в сравнении с другими способами прибавки такой же мощности мотору. Мое мнение - если вы аккуратно используйте систему и имеете соответствующие устройства безопасности, системы впрыска азота столь же безопасны, как и другие варианты доработки двигателя (турбины, механические нагнетатели и пр.). Всех неприятностей, о которых я слышал, связанных с применением впрыска азота, можно было избежать, если бы соблюдались необходимые правила предосторожности.
Есть неоспоримая выгода при применении азота - возможность активировать систему тогда, когда вам это нужно, в остальное время эксплуатируя автомобиль в привычном режиме, тем самым ограничивая нагрузку на двигатель.

Matt Paul (США)

Об этом я мечтал давно. Только представить: открываю багажник, а там - чистота, красота, порядок, масса свободного места и, главное, ни одного болтающего провода. В идеале - вообще не видно проводов! В предыдущей машине реализовать свою мечту мне так и не удалось. Максимум, на что меня хватило, прикрутить усилитель на фанерной подставке к спинке заднего сиденья. Однако в текущей машине решил кардинальным образом исправить ситуацию. Но как?

Стоит ли говорить, что различных инсталляций я насмотрелся предостаточно. Однако спроецировать что-нибудь из увиденного на свой багажник как-то не получалось, ничего не нравилось... Нужна была оригинальная идея, причем конструкция должна была бы отвечать определенным требованиям:

Провод питания аппарата должен иметь наименьшую длину;

Усилитель и провода не должно быть видно (вариант скрытой установки);

Моментальный доступ к регулировкам и клеммам, никаких проблем с коммутацией проводов;

Конструкция должна занимать минимум места в багажнике и обеспечивать нормальное охлаждение усилителя;

При всем этом решение должно быть простым и изящным.

Схема с креплением усилителя под передним сиденьем мне совсем неинтересна. Спинка заднего сиденья тоже сразу отпала: было уже, проходили - при откидывании спинки аппарат будет мешаться, да и к блоку регулировок тянуться далековато. Поэтому для выполнения первого и третьего требований решил установить конструкцию в левой части багажника; силовой провод от аккумулятора у меня проложен по левой стороне кузова, практически по прямой, так что первое условие выполнялось. Подходящим местом оказалось только пространство возле арки левого заднего колеса, в котором я решил расположить откидывающуюся конструкцию в виде перевернутой буквы "Т" с усилителем, закрепленным "лицом к стене".

Инструменты и материалы


Из материалов мне потребовалось:

Обрезки десятимиллиметровой березовой влагостойкой мебельной фанеры площадью не более 0,5 кв. м.;

Полфлакона Дзержинской эпоксидки;

Грамм 30 полиэфирной шпаклевки "Body" со стекловолокном;

Штук 10 черных саморезов длиной 70 мм, немного оцинкованных гвоздей 35х2;

Отрезок мебельной петли не более 50 см длиной:

Грунтовка и черная краска "Maston" в аэрозоле;

Отрез тянущегося карпета 0,5*2м, на вид либо "А21 Charcoal", либо " А23 Heater Charcoal". К нему специальный полиуретановый клей в аэрозольной упаковке "Bondo" Spray Adhesive.

Набор электроинструментов стал уже стандартным - электролобзик "Skill", электродрель "Sparky" с насадкой для шлифования, круги зернистости 30 и 80. Плюс такой же стандартный набор ручного инструмента.

Каркас

Из фанеры вырезал основание конструкции в форме, очень похожей на боковой "лепесток" покрытия пола багажника, которым прикрыты глубокие ниши возле арок колес. Подогнал форму таким образом, чтобы она, будучи прикрепленной длинной петлей к полу, свободно накрывала нишу, а также беспрепятственно поднималась на 90 градусов.

Устанавливаем усилитель


Основание полки. Туннель для проводов еще не прорезан, но петля уже прикручена. Также видны следы саморезов, крепящих подставку.
Своим правым краем основание должно опираться на выступ арки колеса.

Прикинув глубину установки аппарата, вырезал из двойной фанеры фигуру, к которой и должен крепиться усилитель. Форму подставки пришлось подгонять так, чтобы она как можно более точно повторяла обводы выемки. В итоге подставка своими краями плотно "усаживается" в ковровое покрытие арки колеса без образования щелей. Второй, внутренний слой фанеры имеет вырез в центре в виде арки - при склеивании слоев образуется выемка под усилителем, в которой я планировал подводить межблочные кабели.

Устанавливаем усилитель


На левой части отчетливо виден вырез в виде дверного проема с аркой :-)

Конструкция в виде буквы "Т" успешно получалась, но для надежного соединения ее частей требовалось что-то еще. Кусочками фанеры нарастил нижнюю часть подставки, сделав в ней вырезы под клеммы усилителя. Причем в двух средних слоях наборного брусочка убрал центральную часть, оставив только края - таким образом образовался "туннель" для проводов. Такой же туннель пришлось проделать и в основании полки, чтобы все коммуникации можно было бы незаметно подвести к усилителю под фальшполом багажника и ковровым покрытием арки колеса.

Устанавливаем усилитель

Вот так будет располагаться усилитель.
Все провода должны подводиться через "туннель" - питание и акустические подключатся к клеммам, а межблочники пройдут под усилком и присоединяться с противоположного торца. Хорошо видна форма наборного бруска: выемка под клеммы усилителя и туннель для проводов.


Как и в случае с сабвуфером, все фанерные части я вырезал элекролобзиком, тут же скреплял их гвоздями и подгонял электродрелью с шлифовальным кругом. Затем все деревянные части склеил воедино эпоксидкой, прихватив наиболее ответственные места саморезами. Петлю намазал "жидкими гвоздями" и привинтил к основанию саморезами.

Отделка


Поверхности слегка зашкурил и подшпаклевал, покрыл грунтовкой (скорее за компанию с сабвуфером). Так как в основном вся поверхность планировалась под оклейку карпетом, то основательно выкрасил черной краской только выемку под межблочники, а все остальное покрыл в один слой на всякий случай.

Устанавливаем усилитель

Вот так должна откидываться конструкция, крепление к полу багажника соответствует действительности.
Для наглядности в туннель просунуты провода.


Покрашенную полку еще раз примерил по месту в багажнике и потом почти целиком оклеил ее карпетом, за исключением обратной стороны основания и области под усилителем. К готовой конструкции прикрепил усилитель, привинтил петлю к полу багажника саморезами и подсоединил провода. Получилось просто замечательно!

Устанавливаем усилитель

Полка полностью откинута. Видно, что ниша полностью функциональна - наличие в ней аптечки это доказывает.
Провода пока не уложены и болтаются как попало, я буду их менять и упорядочивать. Позже...


Были опасения - а как фиксировать полку в закрытом состоянии, не будет ли она самопроизвольно открываться на крутых виражах? Но раньше времени не стал усложнять себе задачу, и, как впоследствии оказалось, правильно. Во-первых, усилитель смещен в нужную сторону относительно оси вращения (откидывания), за счет этого он своим весом как бы "закрывает" дверцу. Во-вторых, оклеенная карпетом подставка достаточно плотно усаживается в коврик багажника. Таким образом за пару недель поездок "дверца" ни разу несанкционированно не открылась... В крайнем случае пара полосок "липучки" на торцах дадут 100%-ную гарантию неподвижности конструкции.

Устанавливаем усилительУстанавливаем усилитель


Полка приоткрыта градусов на 30. И вот они, все регулировки!
Удобство просто не описать словами, крути - не хочу ! Как и задумывалось - не видно ни усилителя, но одного провода! Даже не верится, что радость была так близка и доступна :-) Все, с такой красотой прямая дорога на соревнования.


Как и задумывалось - не видно ни усилителя, но одного провода! Даже не верится, что радость была так близка и доступна :-) Все, с такой красотой прямая дорога на соревнования.

Коврик пола багажника пришлось немного подрезать, но без этого - никак. И на этом этапе вмешательство во внутреннее пространство багажника я закончил.

Выводы


Я очень доволен получившейся конструкцией, особенно соотношением трудозатрат к достигнутому эффекту. Действительно, валяющийся в багажнике усилитель (прикрученный к спинке) создавал сильный дискомфорт, который даже умудрялся проникать в салон :-) Полка отвечает всем обозначенным выше требованиям, включая охлаждение усилителя. Карпет обивки настолько совпадает с "родным", что в полумраке багажника на первый взгляд вообще ничего лишнего не заметно. Осталась лишь проблема нормального освещения багажника, которая в инсталляции играет далеко не последнюю роль...

Вырезал я полку моментально, по сравнению с трудозатратами на новый сабвуфер это просто ерунда, всего лишь пара взмахов электролобзиком. Обтяжка карпетом в целом удалась, правда, пришлось наклеить пару тренировочных кусочков. Со звуком (шумы, наводки, фон) никаких проблем, чего я тоже немного побаивался. Но почти все провода я буду менять и укладывать заново, хотя будет это ближе к теплу, как предполагается...

За полноценный тюнинг можно заплатить цену самого автомобиля

Тюнинг для машины - это все равно что эксклюзивный наряд от кутюр. И то и другое стоит, порой, целого состояния, но оно того стоит! Человек, как известно несовершенен, а вот довести до ума авто – вполне возможно. Правда, сколько бы денег у Вас ни было – все будет мало. Пределов совершенства нет. Хотя, пожалуй, есть… Это Ваше банкротство.

Тюнинг - от английского слова "настройка" - по большому счету, делится по принципу влияет он или не влияет на скорость.Внешний тюнинг – это улучшение аэродинамических качеств авто. Для достижения нужного эффекта мастера тюнингуют оба бампера, добавляют передний и задний спойлеры, пороги. Форма и размер спойлера определяется с учётом выноса колес за пределы кузова. Наиболее популярны в последнее время спортивные спойлеры с большими отверстиями для воздухозаборников. Установка переднего спойлера, кроме прочего, позволяет установить дополнительные фары (например, «ксенон»), а также способствует охлаждению передних тормозных дисков. Войдя во вкус, можно превратить свою машину в настоящее НЛО. Например, с помощью специальных колпачков на вентили колес. Эффект светящихся ободов, правда, у большинства серьезных людей вызывает, скорее, ухмылку, чем восхищение, но, тем не менее, отношение к этому варианту тюнинга на продажах не сказывается. Еще один "инопланетный" подход к созданию индивидуальности - неоновая подсветка днища. Комплект из 4 неоновых ламп в защитных трубках длиной 1 м, установочный крепежный комплект и блок управления можно купить примерно за $300. Однако устанавливать в головную оптику стробоскопические лампы или противотуманки, "бьющие в небо", все же не стоит, дабы не нарваться на неприятности или не стать причиной аварии, ослепив водителя другой машины ярким светом.

Пожалуй, самым красивым видом тюнинга все же является качественно выполненная, дорогая аэрография.
Настоящего же "зверя" в машине будит внутренний тюнинг, т.е. модернизация двигателя, подвески, выхлопной и тормозной систем. Такое вмешательство во "внутренности" автомобиля еще называют инжинирингом. Мастера зачастую вносят серьезные изменения в конструкцию "движка": увеличивают рабочий объем и устанавливают турбонагнетатели, нестандартные поршни и даже систему впрыска закиси азота. Последнее "удовольствие", правда, стоит дорого, а в применении крайне опасно. Однако участников экстремальных гонок это зачастую не пугает.

Инжиниринг по плечу только высококлассным специалистам, имеющим в своем распоряжении соответствующую инженерную и техническую базу. Доверять машину непрофессионалам, впрочем, как и самому пробовать довести авто "до ума" ни в коем случае не стоит, так как это может привести к серьезным последствиям.

Так, изменение главной пары (элемент сцепления) дает неплохой прирост в динамике - сокращается время разгона. Но при этом снижается максимальная скорость и увеличивается расход топлива. Жесткие пружины, амортизаторы и мощные стабилизаторы увеличивают жесткость подвески: машина лучше держит дорогу на высокой скорости, особенно при поворотах. Но при заносе машины управление значительно ухудшается.

За полноценный тюнинг, как показывает практика, выкладывают как минимум стоимость самого автомобиля. Предел же возможностей и затрат не знает границ. Поэтому цена тюнингованной "десятки" LADA поднимется на 70%, а иномарки - вдвое и больше.Желающие быть "на высоте" и в "зоне доступа" везде и всегда, могут оттюнинговать свое авто с помощью различных достижений техники. Да, техника и сюда дошла. И теперь смотреть телевизор, проводить конференции с партнерами по бизнесу, можно не выходя из салона.

Ассортимент услуг у инсталляторов довольно широк. В последнее время на смену магнитоле с парой колонок все чаще приходит настоящая мультимедийная система. Это не только магнитола или CD/MD-ресивер, чейнджер и акустика, подключенная через усилители, но и телевизионные панели, мониторы, DVD-чейнджеры, ТВ-тюнеры. Благо, сегодня практически все мировые брэнды представлены на российских прилавках. Кстати, неплохую аппаратуру предлагают и отечественные производители. Правда, их не так уж и много…

Но и этот вид тюнинга требует вмешательства "мастера руки". Техника, как известно, дилетантов не любит. Грамотный установщик способен превратить автомобиль в демо-зал для прослушивания музыки на аппаратуре класса hi-end. В таких инсталляциях учитывается каждая мелочь. Автомобиль разбирается практически полностью. Необходимые полости кузова шумоизолируются, размеры и направления подиумов для акустики рассчитываются до миллиметров. После завершения установки звуковая сцена в салоне может корректироваться программно, в зависимости от особенностей конкретного автомобиля.

Правда, настоящий оркестр в салоне собственного авто - вещь довольно дорогая. С учетом работы и всех возможных "прибамбасов", обойдется в районе 1500-2000$. Можно, конечно, найти варианты дешевле. Здесь, что называется, "от каждого по возможностям, каждому - по потребностям".

Постепенно набирает обороты и установка в автомобиле различных навигационных систем. В развитых странах подобная опция все чаще включается в стандартную комплектацию авто. В России до недавнего времени высокоточное определение координат по спутнику было вообще вне закона. Но сегодня на основе системы спутниковой навигации GPS и сотовых сетей потребителю предлагается уже несколько вариантов противоугонных систем, а также систем мониторинга за парком автомобилей.

Тюнинг автомобиля редко обходится без изменения дизайна салона, обычно в сторону спортивного стиля. Сиденья меняют на более удобные, учитывающие анатомию, ставят спортивный руль. Все чаще в машинах стандартная обивка заменяется кожаной ($3500), а салон отделывают ценными породами дерева, карбоном, специальными тактильными лаками… Сегодня установщики способны выполнить практически любой каприз клиента.

Однако в погоне «за прекрасным», заказчики, впрочем, как и исполнители, не задумываются, насколько законны их действия.

Так, в приложении к "Основным положениям по допуску транспортных средств к эксплуатации" есть "Перечень неисправностей и условий, при которых запрещается эксплуатация транспортных средств". В частности, там существует пункт 3.1. "Количество, тип, цвет, расположение и режим работы внешних световых приборов не соответствует требованиям конструкции транспортного средства". Есть и более интересный пункт 3.3. "Не работают в установленном режиме или загрязнены внешние световые приборы и световозвращатели". Впрочем, как показывает практика, максимум за такое "хулиганство" инспектор ГИБДД выпишет штраф в размере 50 руб. К тому же Правила дорожного движения РФ содержат почти универсальную отмазку: "2.3.1. ...При возникновении в пути прочих неисправностей, с которыми приложением к Основным положениям запрещена эксплуатация транспортных средств, водитель должен устранить их, а если это невозможно, то он может следовать к месту стоянки или ремонта с соблюдением необходимых мер предосторожности".

Примерно так же обстоят дела и с различными обвесами. Тот же "Перечень неисправностей" запрещает эксплуатацию транспортных средств, в конструкцию которых согласно пункту 7.18. "внесены изменения без разрешения ГИБДД Министерства Внутренних дел РФ или иных органов, определяемых Правительством РФ".

С аэрографией тоже не все просто. Действующими Правилами дорожного движения не запрещено наносить на транспортное средство рисунки, если они не носят рекламного характера. Однако если картинка существенно (более чем на 70%) изменяет первоначальный цвет автомобиля, владельцу необходимо обратиться в МРЭО для его перерегистрации в связи с изменением обычного цвета на комбинированный. Конечно, никакой инспектор ГИБДД не будет заниматься изучением величины рисунка Вашего автомобиля, но повод для придирок есть. В этом случае и впрямь проще перерегистрировать. К тому же, серьезные салоны порой предлагают в этом помощь.Так что тем, кто любит кататься, придется и денежки платить! Хотя, к сожалению, в суровой московской реальности всю красоту и стоимость Вашего тюнинга смогут оценить разве что соседи по пробке… Хотя это тоже весьма приятно.

Даже в нынешнее, весьма "недешевое" время многие стремятся индивидуализировать свой автомобиль, сделать его мощнее и темпераментнее.

Любителям быстрой езды вечно не хватает мощности стандартного мотора. Когда резервы настроек и регулировок исчерпываются, наступает пора форсировки - процесса творческого, а потому дорогостоящего.

Вы не раз слышали о так называемых спортивных выхлопных системах. Давайте разберемся, что к чему, в этом вопросе.

Выхлопная система стандартного автомобиля служит для собственно отвода отработавших газов из камеры сгорания мотора. Попутно решается задача глушения звука выхлопа.

Движение отработавших газов в выпускной трубе представляет собой колебательный процесс, который может быть согласован экспериментально с колебательным процессом движения горючей смеси во всасывающем тракте с таким расчетом, чтобы улучшить очистку цилиндра от отработавших газов и его наполнение свежей смесью. Давление в выпускной трубе подвержено резким колебаниям в течение всего периода выпуска. В первый момент после открытия выпускного клапана продукты сгорания устремляются в выпускную трубу с весьма высокой скоростью, превышающей скорость распространения звука. Быстрое удаление 50% продуктов сгорания влечет за собой образование в цилиндре разряжения, которое может доходить до 0.5 кгс/см2. Точно так же и в выпускной трубе образуются периоды пониженного давления.

Эксперименты с выпускными трубами доказали, что длина трубы не влияет на эффективность очистки цилиндра в первой стадии процесса выпуска, но зато с увеличением длины трубы в известных пределах увеличивается длительность периода, в течение которого поддерживается разряжение.

С изменением частоты вращения период пониженного давления в выпускной системе не только изменяется по длительности и величине разряжения, но и смещается по углу поворота коленчатого вала. Поэтому каждому режиму работы двигателя соответствует определенная оптимальная длина выпускной трубы.

В выпускной системе ДВС присутствуют два процесса. Первый - сдемпфированное в той или иной степени истечение газа по трубам. Второй - распространение ударных волн (звука) в газовой среде.

Оба процесса оказывают влияние на коэффициент наполнения цилиндров. С первым всё просто и понятно. Большое сопротивление потоку газов (заткните выхлопную трубу!) вызовет снижение качества продувки и потерю мощности. Совершенно понятно, что чем короче и большего диаметра труба, тем меньше её сопротивление потоку. В реальной жизни для полуторалитрового мотора, работающего на оборотах не выше 8000 достаточно диаметра 45 - 50 мм при длине 3 - 3,5 метра. Дальнейшее увеличение диаметра не вызывает существенного уменьшения динамического сопротивления.

Далее понятно, что если в выпускной системе построить на некотором расстоянии от клапана отражатель, который называют резонатором, то на определённых оборотах улучшится продувка цилиндров, что поднимет вращающий момент двигателя. Это явление называется "настроенный выхлоп" и используется для корректировки моментной кривой. Если задача стоит повысить мощность, как для спортивного мотора, то резонатор настраивают на падающий после максимума участок. Таким образом, продлевают момент на большие обороты. Мощность, как известно, произведение угловой скорости на вращающий момент. Если мы хотим получить более "тяговитый" мотор на низах, то настраиваем на растущий участок до максимума.

Что касается шума, то этим занимается глушитель, расположенный как можно дальше, для того, чтобы снизить его влияние на резонансные свойства. Задача глушителя - только погасить звук многократным отражением в лабиринте или направить его в звукопоглощающий материал (стекловату, например), оказав как можно меньшее сопротивление потоку газов.

Если обратиться к зарубежной практике, то выясняется, что специалисты в области выхлопных систем могут получить прибавку в мощности более 12 -15 лошадиных сил. Эта солидная прибавка мощности получается заменой всех частей выхлопной системы ("штаны", катализатор, резонатор, оконечная часть).

Спортсмены получают большую прибавку, но за счет того, что у них не связаны руки громкостью выхлопа - спортбайк имеет звуковое давление около 120 децибел (официально разрешенный предел 100 ДБ).

Глушитель по группе А может дать прибавку и в 30 сил, но ездить по городу будет невозможно. Кстати, любое серьезное вмешательство в выпускную систему требует корректировки системы питания. Исходя из этого - тюнинг 16 клапанного мотора через систему выпуска отработавших газов одно из самых не последних дел в его усовершенствовании.

В частном варианте, можно ограничиться оконечной банкой, резонатором и более продвинутыми "штанами". Замена труб на трубы большего диаметра даст прибавку, она не трудноосуществима на дорожных машинах.

Замена такой схемы на цельный выпускной коллектор с равными длинами от выпускных каналов головки до места соединения с приемной трубой даст прибавку до 5-7 лошадиных сил.

А как же звук? Да, сделать звучание машины более породистым можно и даже нужно.

Варианты - универсальные, вроде Powerful , Remus или Custom выхлоп. Powerful, Remus а также Supersprint выпускают универсальные глушители - их оконечный бачок с минимальными переделками устанавливается вместо стандартного. Отдача - конечно же, производитель обещает "more powerful engine", стадо лишних кобыл и т.п., но что-что, а звук породистый вы получите. Опять же сзади под бампером будет висеть здоровенный "самец", а не узкая фитюлька стандартного выхлопа (например, на 2110 на этой трубе явно сэкономили).=================
vaz.ee

Следует отметить, что не слишком загрязненный и постоянно эксплуатируемый карбюратор работает ничуть не хуже, чем идеально чистый, так как все работающие подвижные сочленения постоянно самоочищаются, а грязь снаружи сама не может попасть внутрь.

необходимый инструмент
наружная мойка
внутренняя мойка
регулировка поплавков
регулировка систем
регулировка пусковой системы
Регулировка системы холостого хода
ПОИСК И УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ КАРБЮРАТОРА
Провал, рывок, подергивание, раскачивание, вялый разгон
подача топлива
система зажигания
частые короткие и резкие рывки
Слабое мягкое подергивание
Общая неустойчивость
проверка систем
Неустойчивая работа двигателя на холостом ходу
Провал даже при самом медленном открытии дроссельной заслонки
Легкие подергивания автомобиля
Провалы, рывки и раскачивания автомобиля
Затрудненный пуск прогретого двигателя
Затрудненный пуск холодного двигателя
Повышенный расход топлива

--------------------------------------------------------------------------------

Карбюратор ДААЗ-2108, как, впрочем, и любой другой современный карбюратор весьма надежен и требует при правильной эксплуатации минимального объема работ по обслуживанию. Большинство его неисправностей бывает связано либо с неквалифицированным вмешательством в регулировку, либо с засорением в нескольких характерных зонах, вызванным чаще всего неправильными действиями владельца.

--------------------------------------------------------------------------------

Для обслуживания карбюраторов необходимы следующие инструменты и приспособления:

рожковый или накидной гаечный ключ на 13 мм для снятия карбюратора с двигателя, для отворачивания электромагнитного клапана и торцевой ключ 13 мм для отворачивания пробки топливного фильтра;
шлицевая отвертка с лезвием 7х0,8 мм для демонтажа крышки корпуса, крышек ускорительного насоса и экономайзера; воздушных жиклеров и некоторых других узлов;
шлицевая отвертка с лезвием шириной 4,0 мм и длиной не менее 65 мм для отворачивания главных топливных жиклеров, а также для регулировки состава смеси на холостом ходу;
остро заточенная палочка диаметром 3,5...4 мм и длиной 80... 100 мм для извлечения главных топливных жиклеров из эмульсионных колодцев;
рожковый ключ на 11 мм для отворачивания корпуса запорной иглы поплавкового механизма;
рожковый ключ на 8 мм для отворачивания контргайки на регулировочном винте в крышке диафрагменного механизма пускового устройства и удержания от поворота зажима троса управления воздушной заслонкой;
ключ на 8 мм (желательно торцевой) для отсоединения троса управления воздушной заслонкой;
рожковый ключ на 7 мм для начального приворота винта регулировки механизма приоткрытая дроссельной заслонки при пуске (в случае коррозии винта);
короткая отвертка (50...70 мм) с лезвием шириной 4...5 мм для вращения упорных регулировочных винтов пусковой системы;
круглые калибры (или сверла) диаметром 1,1 и 2,0 мм для регулировки величины приоткрытия дроссельной и воздушной заслонок при пуске;
бронзовая или латунная оправка диаметром 3,5...3,9 мм и длиной 35.. .45 мм для удаления оси кронштейна поплавков;
легкий молоток;
приспособление для ремонта игольчатого запорного клапана (см. ниже);
отрезок медной проволоки диаметром 0,8...0,9 мм и длиной 100 мм для прочистки главных топливных жиклеров;
короткий отрезок медной проволоки диаметром 0,3 мм для прочистки топливного жиклера холостого хода и жиклера эконостата;
короткий отрезок стальной проволоки диаметром 0,2...0,25 мм для прочистки распылителей ускорительного насоса;
резиновая груша с тонким носиком для контроля герметичности запорного клапана поплавкового механизма;
насос с резиновой трубкой диаметром 6 мм для продувки каналов карбюратора и очистки деталей от грязи и пыли;
вольтметр на 15 В постоянного тока для контроля работы системы ЭПХХ.

В числе основных практически целесообразных и необходимых работ по техническому обслуживанию и регулировке карбюратора следует отметить следующие:наружная мойка;
промывка сетчатого фильтра на входе в поплавковую камеру;
промывка поплавковой камеры; .
очистка воздушных жиклеров и других деталей от отложений;
регулировка поплавкового механизма;
регулировка пускового устройства;
регулировка системы холостого хода.

--------------------------------------------------------------------------------

Все эти работы не требуют обязательного демонтажа карбюратора с двигателя. Наружная мойка производится при помощи кисти любой растворяющей маслянистые отложения жидкостью: бензином, керосином, дизельным топливом, хотя, ввиду большей пожарной безопасности и меньшей испаряемости, следует предпочесть последние две. Еще лучше применять специальные химические составы, смываемые водой. После мойки карбюратор неплохо обдуть снаружи сжатым воздухом, хотя бы от автомобильного компрессора. Периодичность этой работы определяется самим водителем исходя из условий эксплуатации и, обычно бывает, необходима 1-2 раза в год.

Следует отметить, что не слишком загрязненный и постоянно эксплуатируемый карбюратор работает ничуть не хуже, чем идеально чистый, так как все работающие подвижные сочленения постоянно самоочищаются, а грязь снаружи сама не может попасть внутрь. Технически необходима только чистка и мойка карбюратора с толстыми лохмотьями жирной грязи в рычажном механизме и пусковой системе, затрудняющими взаимное движение деталей. Но следует помнить, что каждая мойка - внесение в трущиеся пары песка и мелкого абразива. Поэтому излишнее усердие в этом тоже ни к чему.

Перед тем как мыть карбюратор на двигателе, снимите воздухоочиститель. В процессе мойки соблюдайте осторожность и не допускайте, чтобы грязь попала во внутренние полости карбюратора и впускной коллектор.

Засорение сетчатого фильтра на входе в поплавковую камеру происходит сравнительно редко и за весь период эксплуатации автомобиля аккуратному водителю может совсем не понадобиться его промывать, тем более что в системе питания современных автомобилей есть дополнительный фильтр тонкой очистки топлива, весьма эффективно защищающий карбюратор от загрязнения. О признаках засорения сетчатого фильтра мы будем говорить далее, в разделе, посвященному поиску поломок карбюратора.

Тем не менее, чтобы избежать неисправностей в пути, после пробега 50.. .70 тыс. км, или один раз в 2-3 года имеет смысл проверить состояние фильтра, тем более что, эта работа несложная, хотя и она требует соблюдения определенных правил.

Чем мыть внутренние поверхности и детали карбюратора? Обычно рекомендуют делать это чистым бензином. Однако бензин не растворяет смолы и лакообразные отложения, ведь карбюратор в процессе работы и так постоянно им "промывается". Поэтому лучше делать это, применяя растворители ? 645-652, гексапен, ацетон, дихлорэтан, амилацетат или различные спирты. Надо только помнить, что сильные растворители могут повредить неметаллические детали (прокладки, диафрагмы), их надо мыть отдельно и только в бензине.

Перед тем как отвернуть пробку - держатель сетчатого фильтра подкачайте вручную топливо бензонасосом, чтобы поплавковая камера полностью заполнилась топливом, и запорный клапан закрылся. Отвернув пробку, извлеките сетчатый фильтр, промойте его растворителем и продуйте воздухом. Если полость под пробкой сильно загрязнена, то промойте ее тонкой кистью с жестким невыпадающим волосом. Затем подставьте под отверстие для пробки какую-либо емкость и вновь подкачайте топливо, промывая внутреннюю полость прилива фильтра. И, наконец, установите сетку глухим концом в пробку и заверните пробку до упора.

При таком порядке работы грязь не будет попадать в поплавковую камеру и засорять топливные жиклеры, что часто бывает следствием неаккуратной промывки фильтра.

Неотложная промывка поплавковой камеры может понадобиться, если внезапно нарушится нормальная работа двигателя под средней и большой нагрузкой, чаще всего вследствие прекращения нормальной топливоподачи через главную топливодозирующую систему первичной камеры. Так как эта работа требует определенных условий, сначала нужно убедиться в ее необходимости: может оказаться, что предполагаемая неисправность вызвана другими причинами. В этом случае следует предварительно проделать все операции, описанные ниже в разделе о методах поиска неисправностей. Если двигатель работает нормально и соблюдены элементарные меры, позволяющие избежать загрязнения топливного бака (например, исключены случаи заправки автомобиля из канистр через воронку без сетки), практически нет необходимости заниматься этим чаще, чем один раз в 2-3 года. Косвенным свидетельством степени загрязнения поплавковой камеры является состояние уже упомянутого сетчатого фильтра на входе в карбюратор: засорение плотными отложениями хотя бы одной пятой части поверхности сетки указывает на целесообразность проверки состояния поплавковой камеры и, возможно, ее очистки.

Чтобы получить доступ к поплавковой камере, снимите воздушный фильтр, ослабьте хомуты крепления топливных шлангов и снимете их со штуцеров, отсоедините трос управления пусковым устройством, снимите электрический разъем на электромагнитном клапане. После этого, отвернув пять винтов крепления крышки карбюратора, осторожно снимите ее движением вверх, стараясь не повредить и не погнуть поплавки. Затем, не прикасаясь к поплавкам, переверните крышку над столом (верстаком), не теряя часто выпадающих из отверстий крепежных винтов, и поставьте крышку на стол поплавками вверх. Нельзя опускать крышку поплавками вниз: это приведет к изгибу их кронштейна и нарушению нормальной работы поплавкового механизма!

Часто автолюбители, не снимая карбюратора с двигателя, ограничиваются тем, что протирают дно поплавковой камеры тряпкой; считая, что достигли цели. Однако подобная очистка может принести больше вреда, чем пользы. Дело в том, что не вытертая до конца грязь, а также волокна, отделившиеся от тряпки, могут остаться в поплавковой камере и быть причиной засорения топливных жиклеров, в первую очередь жиклера холостого хода. В результате исправный карбюратор после такой "чистки" может вообще перестать работать.

Чтобы избежать этого, очищайте поплавковую камеру карбюратора, не снятого с двигателя, резиновой грушей, высасывая топливо со дна заполненной им поплавковой камеры. Перемещая носик груши по поверхности дна, последовательно удалите все загрязнения, стараясь не взмутить отложения. По мере необходимости в поплавковую камеру осторожно долейте из небольшой емкости чистый бензин. На завершающем этапе дно камеры и все углубления можно протереть жесткой тонкой кисточкой и повторно удалить грушей загрязнения.

Если вы промывали карбюратор только для профилактики, этим можно ограничиться.

Если же промывка была предпринята с целью устранения явного засорения главных топливных жиклеров (его признаки приведены ниже, в разделе, посвященном поиску и устранению неисправностей), то после описанных операций с использованием груши, и заполнения поплавковой камеры чистым топливом, выворачивают главные воздушные жиклеры с эмульсионными трубками и продувают сверху сильной струёй воздуха эмульсионные колодцы. При этом из отверстий соединительного канала секций поплавковой камеры должны выходить пузыри воздуха, вынося с собой загрязнения. Сильно засоренные топливные жиклеры, можно прочистить медной проводкой диаметром 0,8 мм, не выворачивая их из колодцев.

При необходимости жиклеры можно вывернуть длинной узкой отверткой и вынуть, плотно насадив их на заточенную деревянную палочку. При вывернутых жиклерах пузыри при продувке колодцев будут выходить гораздо интенсивнее.

Появление в результате продувки колодцев грязи, в предварительно промытой поплавковой камере свидетельствует о наличии загрязнения соединительного канала. В этом случае нужно снова промыть поплавковую камеру и еще раз повторить продувку эмульсионных колодцев.

В целом, несмотря на очевидные преимущества чистой поплавковой камеры, не следует преувеличивать отрицательную роль ее загрязнения: мелкая слежавшаяся пыль на дне камеры может накапливаться в течение нескольких лет, не вызывая никаких нарушений работы карбюратора.

В процессе эксплуатации на деталях карбюратора со временем появляется темный смолистый налет - следствие работы системы принудительной вентиляции картера. По мере износа двигателя, количество картерных газов, поступающих в полость воздушного фильтра, возрастает, и загрязнение деталей карбюратора увеличивается.

Тем не менее, чистить тонкий налет на поверхностях горловины, стенок диффузоров, заслонок нет необходимости, так как он весьма незначительно изменяет сечение этих элементов и практически не оказывает влияния на работу.

В то же время на работу карбюратора существенно влияют отложения на калиброванных отверстиях воздушных жиклеров дозирующих систем. Это прежде всего воздушный жиклер системы холостого хода, а также воздушный жиклер главной дозирующей системы первичной камеры. Значительно меньше засоряются отложениями главный воздушный и воздушный жиклеры переходной системы вторичной камеры, что объясняется относительно небольшой долей времени работы вторичной камеры в эксплуатации.

Проверять состояние указанных воздушных жиклеров целесообразно при очередном снятии крышки карбюратора. Чистить смоченные бензином жиклеры можно медной проволокой или деревянной палочкой. (Для этого главные воздушные жиклеры с эмульсионными трубками удобнее вывернуть). Одновременно с воздушным жиклером холостого хода, необходимо убедиться и в чистоте противодренажного отверстия в крышке карбюратора у кромки закрытой воздушной заслонки.

В нормальных условиях эксплуатации исправного двигателя с небольшим прорывом картерных газов необходимость очистки воздушных жиклеров, в первую очередь жиклера холостого хода и главного первичной камеры, наступает обычно в первый раз не ранее чем после пробега 60.. .70 и даже 100 тыс. км. В дальнейшем, по мере изнашивания двигателя, очистка воздушных жиклеров может требоваться уже каждые 25.. .30 тыс. км.

Регулировка поплавкового механизма - весьма ответственная и в то же время несложная операция при обслуживании карбюратора ДААЗ-2108. Допускаемые здесь ошибки наиболее часто являются причиной его неудовлетворительной работы.

Регулировка выполняется при снятой крышке и включает в себя три операции:

регулировку взаимного положения поплавков, а также поплавков относительно стенок поплавковой камеры;
регулировку механизма при закрытом игольчатом клапане;
регулировку механизма при полностью открытом игольчатом клапане;
Первую операцию выполняют с целью устранения возможных деформаций кронштейна поплавков. Осторожно подгибая половины кронштейна вверх и вниз, добиваются, во-первых, одинакового расстояния от поплавков до прокладки крышки в любом положении держателя, и, во-вторых, подгибая их в боковом направлении, добиваются расположения обоих поплавков по центрам отпечатков верхнего среза стенок поплавковой камеры на прокладке крышки, при котором боковые стенки поплавков были бы параллельны продольным линиям отпечатков. Эта регулировка обеспечивает одинаковое погружение поплавков в топливо и исключает их задевание за стенки поплавковой камеры.Затем переворачивают крышку в горизонтальное положение поплавками вверх, осторожно подгибая отверткой язычок кронштейна, воздействующий на хвостовик запорной иглы с утопленным в ее теле шариком, добиваются, чтобы зазор между выступающими частями поплавков и прокладкой крышки был не менее 0,5 и не более 1,0 мм. При такой регулировке, в вертикальном положении крышки поплавками вбок, когда шарик выступает из тела иглы, линия шва от пресс-формы на поплавке должна быть параллельна плоскости прокладки. Значительная не параллельность указанной линии и плоскости крышки при правильно выполненной регулировке на горизонтально расположенной перевернутой крышке свидетельствует о неисправности уз-па с демпфирующим шариком иглы: чаше всего, западание шарика в геле иглы.

В этом случае, когда нет возможности восстановить или заменить иглу, при подгибании язычка кронштейна следует ориентироваться только на обеспечение параллельности шва на поплавках и плоскости крышки при ее вертикальном положении, не обращая внимания на нарушение рекомендуемой величины зазора между прокладкой и поплавками при горизонтальном положении крышки. Этим обеспечивается вполне удовлетворительная работа карбюратора даже при неисправной игле с утопленным или выпавшим шариком. И, наконец, задним язычком, упирающимся в седло иглы, регулируют зазор при полностью отведенном поплавке, который должен составлять 15 мм.

Один раз правильно выполненная регулировка поплавкового механизма сохраняется весьма долго, нарушаясь чаще всего по причине неаккуратного обращения со снятой крышкой, а также вследствие естественного изнашивания трущихся деталей механизма: запорного конуса иглы, ее седла, язычка и оси кронштейна, В эксплуатации обычно нет необходимости специально разбирать исправно работающий карбюратор для проверки регулировки достаточно совместить ее контроль с очередной очисткой поплавковой камеры и воздушных жиклеров.

Обслуживание ускорительного насоса начинают с демонтажа распылителя. Сняв крышку карбюратора, его осторожно приподнимают лезвием отвертки, введенным под основание трубок, а затем захватывают плоскогубцами за лыски и вынимают. Чистоту жиклеров в трубках проверяют, надев резиновый шланг на основание распылителя (для наглядности можно опустить распылитель в воду). Заодно контролируют и герметичность нагнетательного клапана (для этого нужно держать распылитель вертикально и создать в шланге разрежение).

Если жиклеры засорены, их прочищают медной проволочкой и продувают. При необходимости трубки с жиклерами можно отделить от держателя путем вращения и вытягивания из отверстий, в которые они запрессованы.

Обратный клапан и топливоподводящий канал проверяют, прижав резиновую трубку к отверстию забора топлива в поплавковой камере:

воздух должен свободно проходить при нагнетании и не проходить, когда в трубке разрежение.

Сняв крышку, диафрагму и пружину ускорительного насоса, промывают его полость и при помощи проволоки убеждаются, что она свободно сообщается с вертикальным каналом в корпусе карбюратора.

При сборке системы нужно смочить основание распылителя каплей масла, чтобы не повредить уплотняющее резиновое кольцо.

Заключительная операция - проверка направленности струй топлива из распылителя; при необходимости осторожно подгибают трубки, чтобы топливо в период нагнетания подавалось в зазор между стенками малого и большого диффузоров, как в первичной, так и во вторичной камерах, не попадая на их поверхности,

В связи с наличием двух распылителей ускорительного насоса карбюратор ДААЗ-2108 имеет одну важную особенность. При резком разгоне с частичным нажатием на педаль заслонка вторичной камеры еще не открыта, а бензин в эту камеру, естественно, впрыскивается. Чтобы он там не задерживался, дроссельная заслонка вторичной камеры не должна закрываться плотно. Нужный размер щели устанавливают регулировкой упорного винта заслонки. Если карбюратор чистый и сухой, при просматривании заслонки на солнечный свет или на яркую лампу должен быть виден тонкий (0,1...0,15 мм) просвет по всему ее периметру.

Регулировка пусковой системы может производится двумя способами:

на снятом с автомобиля карбюраторе по зазорам у кромок заслонок;
непосредственно на автомобиле по частоте вращения коленчатого вала.
Первый способ регулировки следует применять, когда по каким-либо причинам карбюратор был снят с автомобиля и подвергался полной разборке. Точно так же поступают и на сборочном конвейере завода, выпускающего карбюраторы.

При повернутом против часовой стрелки до упора рычаге-кулачке управления пусковой системой зазор, контролируемый круглым щупом (сверлом), у нижней (по ходу воздуха) кромки дроссельной заслонки должен составлять 1,1 мм. Он регулируется винтом с шестигранником 7 мм на головке и шлицем на хвостовике. Этот винт часто корродирует. Стронуть с места туго сидящий винт лучше рожковым ключом, вращать его можно отверткой.

Зазор у нижней кромки воздушной заслонки регулируют на величину 2 мм винтом в крышке диафрагменного механизма пусковой системы после ослабления контргайки. При этом загнутый на конце шток диафрагмы должен быть принудительно (хотя бы отверткой) утоплен до упора в регулировочный винт. После регулировки винт должен быть зафиксирован контргайкой.

Второй способ регулировки - непосредственно на автомобиле, позволяет достигнуть желаемых результатов с меньшими затратами времени. Для этого пускают двигатель со снятым воздушным фильтром и годностью вытягивают на себя монетку управления воздушной заслонкой. Принудительно приоткрывая воздушную заслонку, касаясь ее плоскости отверткой, хотя бы на 1/3 ее полного угла поворота, первым винтом устанавливают на прогретом двигателе исходную частоту вращения, составляющую 3200...3400 мин-1. Затем, убрав отвертку и отпустив воздушную заслонку, вторым винтом устанавливают, за счет выбора положения воздушной заслонки, уменьшенную на 300...400 об/мин частоту вращения по сравнению с исходной. После чего винт фиксируется контргайкой, и регулировка на этом заканчивается.

Регулировка системы холостого хода карбюратора выполняется с целью обеспечения устойчивой работы двигателя с минимальным содержанием оксида углерода (СО) в отработавших газах. В распоряжении автолюбителя, как правило, нет газоанализатора, позволяющего быстро и безошибочно выполнить эту работу. Вместе с тем, выполняя изложенные ниже несложные приемы, автолюбитель, имея в своем распоряжении только тахометр, а при его отсутствии -только собственное ощущение частоты вращения коленчатого вала, вполне в состоянии удовлетворительно отрегулировать карбюратор на холостом ходу. Для этого на прогретом двигателе, проколов отверткой пластмассовую заглушку и вращая винт "качества" в разные стороны, устанавливают его в положение, соответствующее максимальной частоте вращения на холостом ходу. Затем при помощи винта количества с ребристой пластмассовой ручкой, предназначенной для его вращения без применения отвертки, устанавливают несколько повышенную (на 150... 170 об/мин частоту вращения по сравнению с обычной для холостого хода. Для надежности еще раз повторяют обе выше описанные операции с винтами качества и количества. После этого, на работающем на холостом ходу с повышенной частотой вращения двигателя, не трогая больше винт количества, заворачивают винт качества, добиваясь падения частоты вращения на 150...170 мин-1, т.е. до нормальной величины. На этом регулировка считается законченной.

Такой способ регулировки, особенно удобный при наличии точного тахометра, регистрирующего изменение частоты вращения на каждые 50 мин-1, позволяет без применения газоанализатора гарантировать содержание СО в отработавших газах на уровне не более 1,5% ( С помощью такой регулировки мне удавалось выставить СО в пределах 0,2-0,3%)

Другие существующие способы регулировки карбюратора на холостом ходу без применения газоанализатора, например, с использованием устанавливаемого в гнездо для свечи зажигания так называемого индикатора качества смеси (ИКС-2) с кварцевым окном, не позволяют гарантировать требуемое содержание СО в отработавших газах. Так, например, рекомендуемое в качестве критерия правильной регулировкой голубое пламя в окне индикатора ИКС-2 наблюдается при содержании СО и 3, и.4 и даже 5,5%. Пламя, в цилиндре меняет цвет с голубого на желтый только при содержании СО более 6%, т.е. далеко за допустимыми пределами.

Регулировку карбюратора на холостом ходу описанным способом можно производить достаточно часто. Однако даже при интенсивной эксплуатации повторять ее более 3-4 раз в год нецелесообразно. Чаще всего бывает достаточно регулировать карбюратор 2 раза в год - весной и осенью, а если автомобиль эксплуатируется только летом - то лишь один раз в начале сезона.

--------------------------------------------------------------------------------

ПОИСК И УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ КАРБЮРАТОРА

--------------------------------------------------------------------------------

Поиск и устранение причин нарушения нормальной работы двигателя, связанных с системой питания, всегда вызывают серьезные трудности не только у владельцев индивидуального транспорта, но и у работников предприятий автосервиса, так как требуют исполнителя более высокой квалификации, чем для выполнения других типовых работ по ремонту и техническому обслуживанию узлов автомобиля. Тем не менее, многие автолюбители, выполняя приведенные рекомендации, будут вполне в состоянии устранить' неисправности карбюратора, составляющие не менее 90% числа дефектов.

При поиске неисправностей карбюратора очень важно сразу исключить возможность наличия неполадок в топливоподающей системе карбюратора. А также в системе зажигания. Иными словами, предпринимать какое-либо вмешательство в карбюратор нужно в последнюю очередь, убедившись в исправности других систем.

Различные нарушения работы карбюратора чаще всего проявляются в ухудщении ездовых качеств автомобиля. Под ездовыми качествами следует понимать совокупность факторов, определяющих ощущения водителя при воздействии на педаль управления дроссельной заслонкой и которые он субъективно связывает с ускорением автомобиля. Организм человека очень чувствителен к ускорению и реагирует на небольшие его изменения. О нарушениях нормальных ездовых качеств, предположительно являющихся следствием дефекта карбюратора, можно говорить, если при изменении положения дроссельной заслонки не происходит ожидаемого привычного изменения движения, т.е. ускорения.

Характер нарушения нормальных ездовых качеств может весьма точно свидетельствовать о причине неисправности. Владельцу индивидуального автомобиля полезно знать об основных разновидностях этих нарушений, известных под названиями: провал, рывок, подергивание, раскачивание, вялый разгон.

Провал - это хорошо воспринимаемое, достаточно продолжительное (от 0,5 до 5 с и более) уменьшение ускорения вплоть до перехода в замедление, несмотря на открытие дроссельных заслонок. Степень его проявления характеризуется термином "глубина" по аналогии с провалом, ямой на дороге.

Рывок - это, по сути, тот же провал, но более ограниченный во времени (0,1...0,4с).

Подергивание - это серия следующих один за другом легких коротких рывков.

Раскачивание - это серия следующих один за другим провалов.

Под вялым разгоном понимают низкую интенсивность увеличения скорости движения автомобиля.

Типичными нарушениями работы двигателя и ездовых качеств автомобиля из-за различных неисправностей карбюраторов являются

следующие:

неустойчивая работа, остановка двигателя на холостом ходу;
провал при открытии дроссельных заслонок, иногда с одновременным нарушением работы двигателя на холостом ходу;
подергивание автомобиля при движении с небольшой скоростью, при открытии дроссельной заслонки вторичной камеры, вялый разгон при нормальной работе двигателя на холостом ходу;
провал при открытии дроссельной заслонки вторичной камеры;
глубокий провал, рывки и раскачивание автомобиля после непродолжительной работы двигателя с большим открытием дроссельных заслонок и особенно при повышении частоты вращения;
провалы при любом резком открытии дроссельных заслонок;
затрудненный пуск прогретого двигателя;
затрудненный пуск холодного двигателя;
повышенный расход топлива;
вялый разгон.
Еще раз напоминаем, что перед тем как предпринимать серьезное вмешательство в карбюратор с целью поиска причин и устранения упомянутых неисправностей, нужно убедиться, что они связаны с дефектами именно карбюратора, а не системы топливоподачи до карбюратора или системы зажигания. Так, в системе питания могут быть засорены топливозаборник, фильтр тонкой очистки топлива или сетка в топливном насосе, негерметичны клапаны топливного насоса. Все эти неисправности могут приводить к нарушению нормальной работы двигателя, появлению провалов в первую очередь при движении с полной нагрузкой, в то время как на малой нагрузке или холостом ходу потребление двигателем топлива невелико и даже при нарушенной топливоподаче его может хватить для нормальной работы в этих режимах.

Фильтр тонкой очистки топлива, предварительно освобожденный от топлива, должен свободно продуваться воздухом под минимальным давлением (таким, какое можно создать ртом). При сомнениях в чистоте фильтра и отсутствии запасного можно эксплуатировать автомобиль и без него (но лучше так не делать).

Магистраль подачи топлива к бензонасосу должна легко продуваться с хорошо слышимым интенсивным бурлением топлива в баке. Перед этой проверкой нужно обязательно снять пробку с бензобака, иначе возможно его повреждение!

Сетчатый фильтр топливного насоса и наличие загрязнений полости в корпусе под сеткой проверяют, отвернув болт с головкой 10 мм и сняв крышку.

Оценить работоспособность клапанов топливного насоса проще всего на двигателе, установив коленчатый вал в пределах двух оборотов в такое положение, чтобы рычаг ручной подкачки топлива не был блокирован кулачком привода. (Причем, при перемещении рычага ручной подкачки, должно ощущаться сопротивление сжимаемой при ходе всасывания пружины диафрагмы насоса.) Для этого снимите топливоподводящий шланг со штуцера на карбюраторе, вручную подкачайте топливо до его появления в отверстии шланга, отворачивая болт крепления крышки бензонасоса, снимите крышку и сетку. Затем плотно перекройте отверстие шланга (можно пальцем), отведите до упора рычаг ручной подкачки насоса в направлении его хода всасывания и затем отпустите, внимательно следя за появлением воздушных пузырей и струек топлива в отверстии выпускного клапана насоса.

Состояние клапана насоса, а, следовательно, и его работоспособность можно считать удовлетворительными, если из-под клапана выходят лишь отдельные пузырьки и струйки топлива, причем они видны в течение, по крайней мере, 1,5 с после того, как отпущен рычаг ручной подкачки. Это свидетельствует о достаточной герметичности клапана насоса. Такую проверку можно повторить несколько раз подряд, пока в полости насоса имеется достаточное количество топлива.

Если выход пузырей из клапана бурный и короткий (менее 0,5 с), то значит он негерметичен, что может указывать на неработоспособность всего насоса. Однако не следует удивляться полному отсутствию пузырей в клапане, если в течение 2...3 с после того, как отпущен рычаг ручной подкачки, в момент, когда открыто ранее перекрытое отверстие шланга от бензонасоса, из него появляются струи топлива: значит клапан герметичен и утечек практически нет.

При установке крышки насоса после его проверки обратите внимание, правильно ли сориентирована сетка: ее круглое отверстие диаметром 7,5 мм должно совпадать с отверстием впускного клапана, причем кольцевая выступающая закраина этого отверстия на сетке должна быть обращена вниз. Затягивать болт крепления крышки следует весьма осторожно, чтобы не продавить ее и не повредить резьбу в корпусе насоса.

Приступая к поиску причин ухудшения динамики разгона, рывков, провалов, учтите, что в этом, возможно, виновата система зажигания.

Вялый разгон может быть связан с неправильной, чаще всего слишком поздней, установкой момента зажигания, а повышенный расход топлива - с не герметичностью трубки подвода разрежения к вакуумному регулятору. Проверить работоспособность вакуумного регулятора проще всего на работающем на холостом ходу двигателе, отсоединив его вакуумную трубку от карбюратора и создав в ней разрежение:

если частота вращения коленчатого вала увеличилась, то явных нарушений в работе регулятора нет.

Частые короткие и резкие рывки (частое резкое подергивание) могут быть следствием нарушения нормального искрообразования, чаще всего при дефектных свечах, значительно повышенной по сравнению с нормой величине искрового промежутка, загрязненных проводах и крышке распределителя, слишком малого зазора между контактами прерывателя (если система зажигания контактная).

Слабое мягкое подергивание может быть вызвано слишком малым (менее 0,6 мм) искровым промежутком свечей зажигания.

На автомобилях АЗЛК-2141, ВАЗ-2104, ВАЗ-2105 провалы и подергивания могут происходить из-за нарушения контакта в гибком проводнике, соединяющем входную клемму на прерывателе-распределителе зажигания с подвижным контактом (молоточком). Вы убедитесь в этом, отсоединив и пережав трубку подвода разрежения к вакуумному регулятору опережения зажигания: характер нарушений в работе двигателя в этом случае обычно резко меняется, так как пластина с контактами прерывателя перестает перемещаться, шевелить и перегибать провод.

Общая неустойчивость работы двигателя на всех режимах и особенно на холостом ходу часто бывает следствием повреждения помехоподавительного резистора в бегунке распределителя. Чтобы этот дефект не влиял на работу двигателя, достаточно поместить рядом с резистором отрезок одножильного медного провода, вводя его концы в хотя бы условное (не обязательно надежное в смысле электрического контакта) соприкосновение с металлическими контактами на бегунке.

Следует отметить, что в любом случае перед вмешательством в систему питания сначала всегда целесообразно проверить техническое состояние системы зажигания и найти явные дефекты и нарушения регулировок в отношении: зазоров между контактами прерывателя и электродами свечей, установки угла опережения зажигания, чистоты высоковольтных проводов, катушки зажигания и крышки-распределителя, исправности вакуумного регулятора, шарикового подшипника пластины контактов прерывателя. При этом нет необходимости тщательно устанавливать зазор между контактами прерывателя: прерыватель будет удовлетворительно работать при зазоре, по крайней мере, от 0,3 до 0.5мм. По существу при проверке необходимо только убедиться, что имеется достаточный для надежного прерывания тока зазор. Попытки с высокой точностью установить этот зазор всегда требуют последующей установки момента зажигания, так как любое изменение зазора между контактами прерывателя влияет на угол опережения.

Убедившись, что причина нарушения работы двигателя по всей вероятности в карбюраторе, целесообразно визуально оценить состояние его узлов и элементов с целью выявить дефекты до опробования на двигателе. Это особенно важно, если карбюратор был снят с автомобиля и еще не проверен в движении. После устранения выявленных таким образом дефектов во всех случаях гарантируется возможность запуска двигателя и движения хотя бы с прикрытой воздушной заслонкой.

Чтобы детально осмотреть элементы карбюратора, частично разберите его, сняв с корпуса крышку. Далее проверяйте состояние элементов карбюратора отдельно по двум основным частям: крышке и корпусу.

Вворачиваемый топливоподводящий и запрессованный топливо отводящий штуцеры должны плотно сидеть в соответствующих бобышках крышки карбюратора. Сетка топливного фильтра, фиксируемая пробкой в полости крышки перед игольчатым запорным клапаном, не должна иметь разрывов, а ее ячейки - сплошного загрязнения отложениями. Корпус игольчатого клапана должен быть плотно затянут на крышке. Шарик иглы при легком нажиме должен свободно утапливаться в ее тело и возвращаться обратно. Поплавки должны без малейшего заедания вращаться на оси и не иметь заметного перекоса.

Жиклеры на двух длинных топливо заборных трубках, запрессованных в нижнюю плоскость крышки, не должны иметь засорений.

Воздушная заслонка должна максимально плотно (без неравномерных у кромок зазоров и косых щелей) перекрывать входную горловину и без заедания поворачиваться на оси. Рычаг на оси воздушной заслонки не должен иметь люфта в месте заделки.

Шток диафрагменного механизма пускового устройства при принудительном утапливании должен легко перемещаться и при освобождении под действием сжатой пружины возвращаться в исходное положение.

В заключение проверьте герметичность иглы, поворачивая крышку поплавком вверх и, создавая разрежение в штуцере хотя бы резиновой грушей: в течение 30 с сжатая груша не должна хоть сколько-нибудь заметно менять свою форму.

Внимание! В карбюраторах, имеющих возврат топлива в бак при проверке герметичности иглы топдивовозвратный штуцер следует плотно закрывать!

Электромагнитный клапан должен иметь иглу с наконечником и жиклером требуемой маркировки. Клапан должен быть плотно, до полного вдавливания резинового уплотнительного кольца в дистанционную втулку, завернут в крышку.

При осмотре корпуса убедитесь в наличии и соответствии требуемым маркировкам резьбовых жиклеров: двух топливных в колодцах и двух воздушных с эмульсионными трубками.

Держатель распылителей ускорительного насоса должен быть плотно посажен в корпус карбюратора на резиновом уплотнительном кольце. Шарик нагнетательного клапана ускорительного насоса должен свободно перемещаться в канале держателя распылителей (проверяется по стуку).

Ось рычага ускорительного насоса должна быть плотно запрессована в кронштейны, винты крепления крышки затянуты. Когда вы оттягиваете рычаг привода ускорительного насоса, должно ощущаться сопротивление сжимаемой пружины диафрагмы.

Теперь проверьте ускорительный насос, заливая в поплавковую камеру бензин на половину ее глубины и вручную перемещая приводной рычаг. При этом после нескольких качков, необходимых для заполнения полости диафрагмы насоса, при каждом перемещении рычага из распылителей должны выходить ровные не попадающие на стенки большого и малого диффузоров струи топлива. Нарушение формы и направления струй свидетельствует о частичном засорении или изгибе распылителя.

При отсутствии струй топлива из распылителя убедитесь в исправности нагнетательного клапана и чистоте отверстий распылителя, а затем (при отсутствии положительного результата) разберите диафрагменный механизм ускорительного насоса, промойте его полость и продуйте все отверстия каналов ускорительного насоса сильной струёй воздуха.

Малые диффузоры должны быть вставлены до упора в гнезда корпуса. При этом входные отверстия их каналов должны быть обращены к главным воздушным жиклерам.

Привалочная плоскость корпуса не должна иметь выступающих забоин.

Оси дроссельных заслонок должны свободно поворачиваться и не заклиниваться в крайних положениях. Если оси проворачиваются туго, размочите их бензином или другим растворителем.

Винт-упор на вторичной дроссельной заслонке должен быть отрегулирован таким образом, чтобы обеспечивать тонкую (0,1 мм) щель у кромок закрытой заслонки (Если у Вас ускорительный насос от Нивы или второй распылитель штатного насоса загнут в первую камеру, то этого зазора не должно быть).

Каналы системы вентиляции картера, включая входной штуцер, должны быть очищены от отложений и легко продуваться.

В соответствующем приливе корпуса должен быть установлен винт регулировки состава смеси на холостом ходу (так называемый винт качества), фиксируемый резиновым кольцом. На верхней плоскости корпуса на топливо заборной трубке системы холостого хода также должно иметься неповрежденное резиновое кольцо.

Провод датчика закрытого положения дроссельной заслонки должен быть соединен двумя пружинящими усиками с металлической головкой винта-упора дроссельной заслонки.

Устранив визуально обнаруженные неисправности и в случае, если не удалось добиться нормальной работы карбюратора, приступайте к проверке его систем, причем в первую очередь тех, которые потенциально могут вызвать отмеченные дефекты. Рассмотрим их в приведенном выше порядке.

Неустойчивая, вплоть до остановки, работа двигателя на холостом ходу может быть следствием слишком обедненной регулировкой смеси, засорения топливного жиклера холостого хода, а также неисправностей либо клапана ЭПХХ на карбюраторе, либо системы управления ЭПХХ.

Выясняя причину дефекта, прежде всего убедитесь в чистоте жиклера (при необходимости восстановите ее), отвернув держатель и выдернув из него пассатижами жиклер. (Предварительно снимите воздушный фильтр.) Торцевое отверстие жиклера диаметром около 0,4 мм должно быть совершенно чистым: топливоподачу нарушит даже одна едва видимая ворсинка в отверстии. Очистите также и каналы в карбюраторе, для чего двигатель запустите без жиклера и держателя в карбюраторе и, поддерживая средние обороты коленчатого вала, на 10... 15 с закройте пальцем отверстие под жиклер.

Когда клапан снят, и жиклер из него выдернут, следует убедится в исправности его электрической обмотки и отсутствии заклинивания находящейся внутри запорной иглы, которая должна иметь выступающий черный пластмассовый наконечник (Этот наконечник на предприятиях автосервиса нередко выдергивают, обеспечивая внешне нормальную работу двигателя с неисправной системой ЭПХХ). Для этого соедините корпус клапана с одним выводом аккумуляторной батареи, а клемму на торце клапана - с другим. В момент замыкания электрической цепи запорная игла должна втягиваться внутрь клапана. Если игла остается неподвижной, убеждаются в легкости ее перемещения от руки и затем омметром проверяют обмотку клапана на обрыв.

Если однозначно установлен обрыв обмотки, временно (до замены клапана) можно применить уже упомянутый прием - выдернуть наконечник иглы, имея в виду, что в этом случае автомобиль будет расходовать в городе на 0,5...0,8 л/100 км больше топлива и не исключено появление самопроизвольных вспышек в цилиндрах двигателя после выключения зажигания.

Проделав эти операции, устанавливают клапан с жиклером на место, осторожно затянув его ключом и надев на контакт электрический провод. При отсутствии изменений в работе двигателя, отдельным проводом соединяют клемму на корпусе клапана непосредственно с "плюсом" аккумулятора: восстановление нормальной работы двигателя свидетельствуют о неисправности системы управления ЭПХХ.

Функционирование системы управления ЭПХХ проверяется на работающем двигателе путем подключения вольтметра одним выводом к проводу, соединяющему электромагнитный клапан с электронным блоком, а другим - к "массе". На холостом ходу и при работе двигателя с открытой дроссельной заслонкой на проводе электромагнита должно быть не менее 10 В. Затем открывают дроссельную заслонку и повышают частоту вращения коленчатого вала до 4000.. .5000 мин-1, после чего резко полностью закрывают дроссельную заслонку. В момент закрытия заслонки и до падения частоты вращения примерно до 1900 мин-1 напряжение на обмотке клапана должно быть не более 0,5 В. Наличие этих признаков свидетельствует о непричастности системы управления ЭПХХ к нарушениям работы двигателя на холостом ходу.

Если в результате проверки установлено, что напряжение на обмотке электромагнита при отпускании дроссельной заслонки остается неизменным, то отсоединяют разъем на карбюраторе, соединяющий датчик положения дроссельной заслонки и блок управления и соединяют освободившийся провод от блока управления с "массой". Если при повторной проверке при частоте вращения коленчатого вала более 2100.. .2300 об/мин напряжение на проводе клапана уменьшается до 0,5 В и менее, неисправность заключается в нарушении контакта датчика положения заслонки с массой, или обрыве провода датчика. В противном случае неисправность связана с электронным блоком или его проводкой. Следует иметь в виду, что вторая неисправность ЭПХХ (отсутствие отключения питания обмотки клапана) приводит только к некоторому повышению расхода топлива и возможному появлению самовоспламенения после выключения зажигания.

Только проделав все изложенное выше, и, тем не менее, не достигнув восстановления нормальной работы двигателя на холостом ходу, следуйте в соответствии с ранее приведенными рекомендациями попытаться заново отрегулировать состав смеси на холостом ходу. Такая последовательность проведения работ позволит избежать усугубления дефекта вследствие разрегулировки исправной системы холостого хода.

Провал даже при самом медленном открытии дроссельной заслонки. Если он наблюдается одновременно с крайне неустойчивой работой двигателя на холостом ходу, может быть связан с засорением жиклера холостого хода. В противном случае (при нормальной работе двигателя на холостом ходу) следует прежде всего проверить регулировку уровня топлива и отсутствие засорения главных топливных жиклеров.

Глубокий, вплоть до остановки двигателя, провал при попытке открыть дроссельную заслонку, первичной или вторичной камер, кроме засорения главных топливных жиклеров, особенно если он возник после чистки карбюратора с его полной разборкой, может быть вызван неправильной установкой малых диффузоров в гнезда.

Внимание! Входные отверстия каналов на плоскости одной из ножек распылителей должны быть обращены в сторону эмульсионных колодцев.

Легкие подергивания автомобиля при малой и средней скорости движения, вялый разгон чаще всего бывают вызваны слишком низким уровнем топлива в поплавковой камере вследствие неправильной регулировки поплавкового механизма. Еще раз обращаем внимание, что зазор между прокладкой крышки и верхним выступом поплавков при перевернутой крышке должен быть 1 мм.

Провалы, рывки и раскачивания автомобиля, внезапно возникающие после непродолжительной работы двигателя с повышенной нагрузкой и устраняемые прикрытием дроссельной заслонки и переходом на малые нагрузки, чаще всего бывают вызваны нарушением нормальной топливоподачи в поплавковую камеру. При уверенности в чистоте топливоподводящей магистрали и исправности бензонасоса причину дефекта следует искать в загрязнении сетчатого фильтра карбюратора на входе в поплавковую камеру.

Провалы, возникающие при любом резком открытии дроссельных заслонок и исчезающие после работы двигателя в том же режиме в течение 2...5 с указывают на неисправность ускорительного насоса.

Основной признак неисправности ускорительного насоса - отсутствие или искривление бензиновых струй из распылителя (хотя бы одной из них), впрыскиваемых в смесительные камеры при повороте дроссельных заслонок. Отметим, что нормальным направлением струи считается такое, при котором она свободно падает вниз, не касаясь никаких деталей - диффузоров, осей, заслонок.

Затрудненный пуск прогретого двигателя, особенно если он заметно облегчается при полностью открытых дроссельных заслонках, чаще всего бывает связан с повышением уровня топлива в поплавковой камере, либо вследствие неправильной регулировки поплавкового механизма, или негерметичности запорного игольчатого клапана. Вторая неисправность на карбюраторах ДААЗ- 2108 крайне редка, хотя запорный клапан, разумеется, со временем может терять герметичность. Проверять это лучше всего резиновой грушей плотно надетой на входной штуцер в крышке поплавковой камеры. Когда крышка снята и положена разъемом вверх, закрывают (хотя бы пальцем) штуцер перепуска топлива (его диаметр меньше, чем у входного) и снимают грушу. Если видно, что она набирает воздух - клапан неисправен. Чтобы отвернуть его, нужно сначала снять поплавки для чего легкими ударами молотка по оправке диаметром 3,5...3,9 мм выбивают ось держателя. Вполне вероятно, что причина дефекта - грязь, попавшая в зону контакта иглы и ее седла. Поэтому, прежде всего, следует тщательно промывать и сам клапан и каналы в крышке, а также, конечно, сетчатый фильтр под пробкой. Если в результате этого герметичность не восстановилась, клапан требует замены или ремонта.

Неразборный клапан можно притереть, осторожно (через бумажную прокладку) зажав хвостовик иглы в патроне ручной дрели и вводя абразив (пасту ГОИ с маслом или подобную ей) через входное отверстие. Ну а если это не помогло и никакого другого выхода нет, остается одно: попытаться разобрать клапан. Понадобится плоская подставка (рис. 13) высотой 15 мм со сквозным отверстием диаметром 9,5 мм, а также оправка диаметром 1,5мм и длиной 15...20 мм. На одном из ее торцов должна быть зенковка, позволяющая центрировать оправку на острие иглы. Клапан устанавливают хвостовиком в отверстие подставки и вводят оправку (зенковкой вниз) в его входной канал. Легкими ударами по оправке выпрессовывают направляющую вместе с иглой. При аккуратном выполнении работы только чуть притупляется вершина иглы, что не имеет практического значения. Для облегчения выхода направляющей можно осторожно подпилить удерживающую ее завальцовку на торце корпуса иглы.

Один из способов ремонта сильно изношенного клапана заключается в рассверливании входного отверстия до диаметра 2,2.. .2,3 мм (не больше!) с последующей притиркой иглы по нему. Притирку выполняют после сборки клапана, так, как указано выше. Для запрессовки направляющей при сборке пользуются трубчатой оправкой, у которой наружный диаметр равен 7 мм, а диаметр отверстия - 5,5 мм. Перед запрессовкой направляющую ориентируют в то же положение, в каком она была до разборки. После сборки для надежности ее крепления можно слегка обжать край завальцовки.

Затрудненный пуск холодного двигателя, неустойчивый выход на повышенную частоту вращения коленчатого вала чаще всего бывает вызван неправильной регулировкой пускового устройства.

Затрудненный пуск двигателя может также быть следствием неполного прикрытия воздушной заслонки. Его контролируют на просвет, сняв крышку карбюратора и повернув рычаг до упора против часовой стрелки. Если щели у краев заслонки велики, отпускают два винта ее крепления на оси и добиваются наиболее плотного прилегания. При этом нужно убедиться, что между штифтом на рычаге воздушной заслонки и верхним профилем рычага есть зазор, то есть рычаг не препятствует полному закрытию заслонки. В противном случае слегка подпиливают прилив, в который упирается ограничитель хода на обратной стороне рычага.

Если диафрагма пускового устройства негерметична, воздушная заслонка приоткрывается недостаточно и запушенный двигатель работает с перебоями из-за переобогащения смеси, требуя утапливания кнопки "подсоса". Диафрагму проверяют, прижав шланг диаметром 10...12 мм к пазу на крышке, куда выходит отверстие для подвода вакуума к пусковому устройству и создавая в этом шланге разрежение. Следует также проверить чистоту канала, который идет от отверстия на нижнем фланце карбюратора к диафрагменному устройству.

Повышенный расход топлива - наиболее сложный с точки зрения поиска возможных причин дефект карбюратора. Основные, чаще всего встречающиеся причины этого могут быть следующим:

неправильная регулировка привода пускового устройства, при которой воздушная заслонка остается в частично закрытом положении при полностью утопленной кнопке управления;
неплотно завернутый корпус клапана ЭПХХ, в связи с чем топливный жиклер холостого хода неплотно прилегает к седлу в корпусе карбюратора;
установка несоответствующих модели карбюратора жиклеров, включая топливный жиклер холостого хода, перепутывание местами главных воздушных жиклеров;
засорение отложениями воздушных жиклеров;
неисправность системы управления ЭПХХ, отсутствие пластмассового наконечника на запорной игле электромагнитного клапана;
негерметичность экономайзера;
неправильный водитель.
Кроме того, не стоит забывать, что низкая экономичность может быть вызвана и другими, не зависящими от карбюратора причинами: износом цилиндропоршневой группы и механизма газораспределения, нарушенными углами опережения зажигания и установки колес, состоянием шин, наличием багажника на крыше и т. п.

Практика показывает, что размеры калиброванных отверстий в жиклерах при изготовлении выдерживаются точно и при правильной эксплуатации по существу с течением времени не изменяются. Поэтому обычно нет нужды проверять их действительную пропускную способность, достаточно ориентироваться на заводскую маркировку. Но если такая необходимость все же возникла (например, есть подозрение, что кто-то грубо чистил жиклеры стальной проволокой), то следует иметь в виду, что цифры маркировки показывают количество кубических сантиметров изооктана, протекающего через жиклер за минуту при высоте напора 500 мм. Но изооктан автолюбителю взять негде, и для точного контроля можно применять воду с высотой напора 1000 мм, а для пересчета пользоваться приведенным здесь графиком ( а вот графика пока и нет... Обязуюсь найти). Кроме того, надо отметить, что проливка изооктаном дает результат, в численном выражении близкий к диаметру отверстия, обозначенному сотыми долями миллиметра (как у прежних моделей карбюраторов ДААЗ). Приблизительно, для общей ориентировки, эти маркировки можно считать идентичными.

Проверку экономайзера начинают с контроля диафрагменного узла. Для этого к демпфирующему жиклеру (разумеется при снятом карбюраторе) приставляют встык толстостенную резиновую трубку с наружным диаметром 6 мм и создают в ней разрежение - грушей или, в крайнем случае, ртом (если автомобиль заправлен неэтилированным бензином). Когда в системе обнаруживается утечка, вначале проверяют затяжку винтов крышки экономайзера; при негерметичной крышке разрежение под ней не достигает требуемого уровня. К снижению мощности двигателя приводит и засорение демпфирующего жиклера;

чтобы оценить его состояние, нужно снять крышку экономайзера и подуть в трубку, приставленную к жиклеру. Ну а в случае, когда поводом для беспокойства послужило не ухудшение динамики, а возросший расход топлива, следует сразу снять крышку и осматривать диафрагму: если в ней есть разрывы, то через них бензин подсасывается в задроссельное пространство.

Другой возможный, хотя и крайне редкий источник неисправности - несъемный, запрессованный в корпус карбюратора шариковый клапан экономайзера. Его герметичность можно проверить, прижав к выходному отверстию клапана (при снятой диафрагме) резиновую трубку и создав в ней разрежение. Но не исключен и, так сказать, противоположный дефект: засорение выходного отверстия клапана или подводящего канала. Проверяется это так. При помощи тонкого стержня отжимают шарик клапана, а затем между ним и седлом помещают кусочек тонкой медной проволоки длиной 15...20 мм, следя, чтобы он не проскочил внутрь. К отверстию клапана вновь прижимают резиновую трубку, но так, чтобы торчащая проволока вошла внутрь нее. Свободный проход воздуха по трубке свидетельствует об отсутствии засорения. Вынимая проволоку из клапана, отжимают шарик от седла иглой. Здесь нужна особая осторожность, чтобы не обломить ее и не повредить клапан.

И, наконец, контролируют наличие жиклера экономайзера, размещенного под диафрагмой. Он съемный, на резьбе, поэтому может быть легко потерян.

В дополнение, после выполнения всех вышеописанных работ по устранению возможных причин повышенного расхода топлива на карбюраторах моделей 2108, 21081, 21083 можно рекомендовать увеличить сечение воздушного жиклера главной дозирующей системы первичной камеры, имеющего маркировку "165" (В 21083 изначально стоял жиклер "155", а позднее завод заменил его на "165", наверное с той же целью экономии топлива. Но динамика точно пострадает!). С этой целью жиклер осторожно рассверливают, зажав хвостовик сверла диаметром 1,6 мм в ручные тиски, и вращая жиклер с эмульсионной трубкой пальцами. Как показывает опыт эксплуатации ВАЗ-2108 такое увеличение сечения воздушного жиклера и связанное с этим обеднение состава смеси на подавляющем большинстве экземпляров карбюраторов не приводит к ухудшению ездовых качеств автомобиля и способствует дополнительному снижению расхода топлива на 0,2...0,4 л/100 км.
=================
vaz.ee

Ни для кого не секрет, что тормоза на «классике» всегда оставляли желать лучшего. Придется нам их немного доработать при этом и учитывать вариант «бюджетности», так как можно конечно говорить о крутых суппортах и регуляторах давления, но за все придется заплатить и немало…

Для начала вам потребуется заменить главный цилиндр, так как создаваемое давление в отечественных экземплярях не блещет характеристиками, да и надежность тоже не на высоте. Из недорогих западных аналогов можно воспользоваться продукцией компании ATE (www.ate.de), которая по сей день продолжает выпускать на классику практически весь спектр необходимых комплектующих. Маркировка ГТЦ на «классику» по каталогу ATE 010416.

Теперь займемся доработкой передних тормозов. Расчет пойдет на то, что, на машину мы планируем установить колеса 14 или 15 дюймов. Понимаю, что в меня начнут кидать камнями, мол «небюджетно» и «зачем это нужно?», поверьте, это не только эстетика, а еще и устойчивость с управляемостью. Не будем сейчас отвлекаться то начатой темы. Самым оптимальным вариантом является установка комплекта передних тормозов от ВАЗ2112 16-ти клапанной версии, этот комплект как раз 14-ти дюймовый, да и диски вентилируемые. Суппорта ставим 12-е родные (2112-3501013 левый и 2112-3501012 правый), тормозные диски покупаем, (предлагаю, и далее буду предлагать исключительно свои варианты, вы же можете использовать по личному усмотрению) опять же ATE 520142 Power Disk , они вентилируемые с эллипсоидными проточками на поверхности диска. Диски спокойно, без каких либо переделок сядут на ступицу. Теперь, что бы установить данный комплект нам потребуется расчитать и изготовить крепление суппорта, так как штатное по понятным причинам не подойдет. К сожалению, я не буду приводить здесь расчет и чертежи крепления, могу скорее дать некоторые рекомендации. Крепление суппорта должно быть толщиной не менее 5-7 мм, и изготовлено из достаточно прочной стали (45, титан – лучший вариант). На данный момент есть готовые варианты креплений, стоимостью около $50 за пару, но пока они проходят тестирование. Тормозные шланги ставим любые (Pirelli, ATE и т.п.). Вот вроде и все. Проверяем надежность соединений, прокачиваем тормоза и тестируемся.

Задние дисковые тормоза. В чем приемущество? В первую очередь это высокая эффективность торможения, надежность (они не набирают воды как барабаны и не примерзают зимой), отличная вентиляция и простота обслуживания. В свое время FIAT 124 был оснащен задними дисковыми тормозами, но отечественный автопром отказался от них по ряду причин. Что нам потребуется для того, что бы перейти с барабанов на дисковые тормоза? Покупаем комплект ториозных дисков ATE 412125, а можно потратить кровные на более крутую версию типа ATE 512125 Power Disk, но не факт, что они будут эффективнее, а стоят они значительно дороже. Суппорта покупаем от ВАЗ 2108 (2108-3501013 левый и 2108-3501012 правый соответственно). Теперь переходим к самой сложной части. Что бы посадить диск нам потребуется проточить заднюю полуось до посадочного диаметра тормозного диска. Эту операцию можно заказать на каком-нибудь заводе, что потребует небольших, но вполне разумных затрат. Затем расчитываем и изготавливаем крепление суппорта, учитывая опыт разработки для передних суппортов. Вместе с установкой полуоси меняем подшипники, например на SKF (VKBA973). Стоит обратить внимание на то, что за подшипниками придется очень внимательно следить и не допускать их разбалтывания, так как это может стать причиной повреждения тормозов и аварии.

Теперь о том, как все это подключать? Ничего сложного в этом нет, так как используется «родная» магистраль. Не стоит забывать и про регулятор давления тормозов. Если у вас он штатно не был установлен на машине его обязательно стоит установить, в противном случае давление создаваемое при торможении будет производиться неравномерно и задние колеса будут перетормаживать со значительным опережением передних. Поверьте моему опыту, когда я избавился от регулятора я очень пожалел, задние колеса начинали тормозить раньше передних на пару секунд, а это влечет за собой высокую вероятность заноса задней оси. Износ и перегрев задних тормозов в этом случае будет неизбежен.

Немного про одну немаловажную деталь – стояночный тормоз или в простонародии «ручник». Так как механический привод ручного тормоза нам пришлось исключить из системы мы с вами установим гидравлический привод. Сложного в этом тоже ничего нет. Для этого нам потребуется главный цилиндр сцепления (24-1602290-10 ГАЗ 2410), рычаг привода ручного тормоза, два тормозных шланга. Далее варим специальный домик для всей конструкции. Используемая сталь около 3 мм, сложного там ничего нет. Шток привода тормоза направляем вперед, урезаем. Вытачиваем небольшой поршень, который потом вставляется в ГЦС, в который входит шток стояночного тормоза. Теперь всю эту конструкцию необходимо подключить. И так с ГТЦ выводим шланг заднего контура в салон и подсоединяем его к выходу 1 на ГЦС (см. фото), а шланг от выхода 2 (см. фото) направляем до регулятора давления тормозов. Схема в принципе не такая сложная, как может показаться на первый взгляд.подключение конструкции

Как работает гидравлический привод тормозов? Поднимая рычаг ручного тормоза мы перемещаем поршень ГЦС вперед, подача тормозной жидкости из трубки 1 перекрывается и создается давление на задний контур тормозов 2, колодки задних тормозов сжимаются, рычаг защелкивается, не позволяя колодкам разойтись. Такой стояночный тормоз держит намертво.

Прокачка тормозов теперь потребует немного больше головной боли, так как при прокачке всех тормозов вам потребуется снять ручной тормоз и поставить его вертикально машине, дабы не образовалась воздушная пробка в ГЦС. Тормозную жидкость лучше использовать с высокой температурой кипения, например Castrol Racing SRX.

Прокачка тормозов


Осталось сделать несколько тестовых заездов, отрегулировать регулятор давления тормозов и добиться равномерного торможения передних и задних колес. Вместо болтов крепления колес я рекомендую использовать шпильки, так как они более надежны и потеря гайки со шпильки не так трагична как болта. Старайтесь не допускать перегрева тормозный дисков.

Пройти ТО с задними дисковыми тормозами, да и доработанными передними официально невозможно. Еще одно маленькое замечание: вмешательство в систему тормозов, ее доработку и переделку вы делаете на свой страх и риск. Автор статьи никакой ответственности за возможные неполадки в работе тормозов никакой ответственности не несет.
===================
vaz.ee

В предыдущей статье мы рассмотрели теоретические основы форсирования двигателя и наметили пути, по которым будем двигаться на практике. Сегодня мы попробуем сделать первые практические шаги.

Прежде всего сформулируем задачу: требуется улучшить эксплуатационные характеристики автомобиля со стандартным двигателем, а именно, динамику разгона и максимальную скорость. Решение этой задачи предполагает вмешательство в конструкцию двигателя с целью повышения его мощностных характеристик.

Объектом наших опытов был выбран редакционный ВАЗ-21093, выпущенный в 2001 году, с пробегом всего 5 тыс. км. Совсем новый автомобиль, его двигатель объемом 1500 см3 с невысокой степенью форсирования (литровая мощность около 36 кВт/л) - идеальный вариант для отработки и проверки всех способов форсирования.С чего начать?

Наверное, с покупки необходимых комплектующих? Или с разборки двигателя?

Не угадали. Вначале оценим исходные мощность и крутящий момент стандартного двигателя. Для этого автомобиль отправляется на мощностные испытания.

Существуют два варианта таких испытаний. Первый - снять двигатель с автомобиля, чтобы затем установить его на специальный испытательный стенд. Такими стендами оснащены многие научно-исследовательские лаборатории и организации, связанные с отработкой процессов в автомобильных двигателях.

На стенде двигатель крепится к раме, а его маховик через специальную муфту присоединяется к валу тормоза (гидравлического или электрического). Тормоз нагружает работающий двигатель, при этом крутящий момент от вала передается на корпус тормоза и измеряется специальным датчиком. Такие испытательные стенды нередко снабжаются системами программного управления, что позволяет испытывать двигатели не только на установившихся, но и на переходных режимах.

Такие стенды имеют ряд преимуществ. И в первую очередь это точность измерения всех параметров - частоты вращения, крутящего момента, мощности. Технически испытания весьма сложны - двигатель надо демонтировать, а затем снова устанавливать в автомобиль. Для нас такой вариант неудобен - долго, трудоемко, а значит, дорого.

Имеются иные мощностные стенды для испытаний двигателя непосредственно на автомобиле. Один из них установлен в Сервисном Центре ЗАО «Аояма Моторс» - официального дистрибьютора фирмы Honda. Туда мы и отправили наш стандартный ВАЗ-21093.

Как будем мерить?

Мощностной стенд фирмы Bosch модели FLA203 работает по следующему принципу: двигатель нагружается через трансмиссию автомобиля и его ведущие колеса, приводящие в движение тормозные барабаны.

Методика испытаний достаточно проста. Автомобиль устанавливают ведущими колесами на тормозные барабаны стенда, закрепляя здесь же специальные ролики, предохраняющие его от бокового съезжания. Задние колеса фиксируют колодками, препятствующими «выпрыгиванию» автомобиля с барабанов. Далее закрепляют датчики частоты вращения (на высоковольтный провод свечи 1-го цилиндра надевается клемма соответствующего кабеля) и температуры всасываемого воздуха. Теперь можно приступать непосредственно к испытаниям.

Стенд FLA203 - прекрасный инструмент для любых мощностных испытаний, поскольку позволяет проводить испытания на всех режимах - от работы двигателя на холостом ходу до движения с максимальной скоростью в режиме максимальной мощности. Для этого стенд имеет программное управление, причем вся необходимая информация отображается на дисплее в режиме реального времени, а в конце испытаний полученные данные могут быть распечатаны.

Важным преимуществом стенда является оперативность проведения испытаний - на один замер, т.е. определение параметров двигателя во всем рабочем диапазоне частоты вращения, уходит не более 10 минут. Делается это так. После программирования режима работы стенда (устанавливают максимальную скорость движения автомобиля, соответствующие ей максимальные обороты и предполагаемый диапазон изменения мощности) запускают двигатель и разгоняют автомобиль на 1-й передаче. Далее дается полный «газ», и автомобиль плавно разгоняется на 4-й передаче. В это время непрерывно регистрируется и выводится на дисплей значение мощности на ведущих колесах.

Заметим, что эта величина еще не есть собственно мощность двигателя, которая больше замеряемой на величину мощности потерянной на преодоление сил трения качения колес и сопротивления трансмиссии. Поэтому для получения значений искомой мощности двигателя выполняется специальная процедура: при достижении максимальной скорости резко, не сбрасывая «газа», выжимают сцепление, и сразу бросают «газ», одновременно переводя рычаг переключения передач в нейтральное положение. Система управления стенда начинает «обратный отсчет»: тормозит автомобиль, а точнее, его трансмиссию и ведущие колеса, измеряя величину мощности всех потерь. И, наконец, после остановки колес компьютер прибавляет эту величину к той, что получена на разгоне.

В результате получается «чистая», без влияния трансмиссии, характеристика мощности двигателя в зависимости от скорости автомобиля. Хотя, возможно, и не столь точная, как у исследовательских мощностных стендов: потери в трансмиссии непостоянны и зависят от многих факторов (температура масла, шин и др.), что вносит дополнительные погрешности, особенно на высоких скоростях. С другой стороны, двигатель испытывается в реальных условиях во время функционирования систем впуска, выпуска и управления, т.е. в момент их комплексного влияния на мощностные показатели. Поэтому ответ на вопрос о том, на каком стенде получаются более точные результаты, не столь однозначен, как может показаться на первый взгляд.«Стандарт» - он и в Африке...

Результат испытаний нашего автомобиля - это протокол с графиком зависимости мощности двигателя от скорости автомобиля. Согласно протоколу максимальная мощность составляет 54,2 кВт при 5030 об/мин, что соответствует скорости движения автомобиля на 4-й передаче 149 км/час. По формуле

N1 = 1,36 N2,

где N1 - мощность в л.с., N2 - мощность в кВт, находим, что наш совершенно стандартный мотор выдает 73 л.с. при 5030об/мин - цифра весьма близкая к паспортной (72 л.с. при 5600об/мин).

Остается построить характеристику двигателя. Для этого необходимо связать скорость v автомобиля с частотой вращения n коленвала по формуле

n = 5030 v149,

а также рассчитать крутящий момент Me, зная мощность Ne на данных оборотах:

Me= 9550 Nen,

после чего нанести полученные значения на график.

Получилась вполне стандартная для двигателя ВАЗ-21083 внешняя скоростная характеристика, причем максимальный крутящий момент (около 115 Н•м) достигается при 3300 об/мин - очень хорошее повторение заводских паспортных данных (110 Н•м при 3400 об/мин). Таким образом, при обкатке моторов на стенде Bosch FLA203 замеры мощности вполне достоверны, несмотря на потери в трансмиссии и на трение качения шин. Это наш ответ скептикам, поскольку в «тюнинговой» среде все еще бытует мнение, что подобные стенды занижают мощность двигателя.

«Джентльменский набор»

После мощностных испытаний исходного мотора наступает первый этап решения поставленной задачи. При этом мы не предполагаем сколько-нибудь серьезного «вторжения» в конструкцию двигателя, а остановимся пока на «поверхностных» работах, в том числе регулировочных.

При таких работах требуется специальный распределительный вал с измененными фазами газораспределения и подъемом клапанов. Наиболее доступны для этих целей распредвалы уфимской фирмы «МастерМотор». Они выпускаются несколькими вариантами для каждого типа отечественных двигателей (ВАЗ-«классика», 21083, 2110-16V, 1111, а также ЗМЗ-402, 406 и УЗАМ 331).

Для нашего двигателя ВАЗ-21083 имеется пять вариантов валов (их цена 3-3,5 тыс. руб.). Часть из них - «низовые», призванные в первую очередь увеличивать крутящий момент на низких и средних оборотах, а вовсе не максимальную мощность. С другой стороны - самый «верховой» вал (по нумерации фирмы «МастерМотор» № 54) требует снятия и переделки головки блока. Поэтому, как разумный компромисс, мы выбрали вал № 52 - он тоже «верховой», но может быть без проблем установлен на место штатного.

К распредвалу обязательно нужен специальный шкив - с возможностью поворота зубчатого венца относительно ступицы, чтобы точно отрегулировать взаимное расположение коленчатого и распределительного валов. Обычный и наиболее распространенный вариант такого узла - разрезной шкив, выполненный из двух стандартных (стоимость около 900 руб.). Более сложные шкивы, к примеру, с алюминиевой ступицей, дороже (1200 руб. и более).

Если поставлена задача улучшить характеристики двигателя на высоких частотах вращения, стандартный карбюратор будет «тормозом» - его диффузоры и смесительные камеры (26-28мм) не «пустят» необходимого количества воздуха. Поэтому желательно установить другой карбюратор с увеличенными проходными сечениями (свыше 3 тыс. руб.), тем более, если в перспективе мы планируем дальнейшее повышение мощности и крутящего момента. Вариантов здесь много: самые «навороченные» карбюраторы Solex имеют размеры смесительных камер до 34/34 мм, но такую технику лучше использовать при «глубоком» тюнинге, сопровождаемом увеличением объема двигателя.

И, наконец, воздушный фильтр. Штатный фильтроэлемент, даже после сравнительно небольших пробегов, обладает заметным сопротивлением, что при больших частотах вращения и нагрузках ограничивает расход воздуха. Чтобы исключить эти потери, применяют так называемые фильтры нулевого сопротивления. Такие фильтры для разных двигателей, включая ВАЗ-21083, производит, к примеру, американская фирма K&N (около 2,5 тыс. руб.).

Итак, наш «джентльменский набор» потянул по минимуму почти на 10 тыс. руб., не считая установочных работ. Однако хочешь ездить быстро - плати за скорость.

Тюнинг? Это просто...

Замена распределительного вала на двигателе ВАЗ-21083 не представляет каких-либо трудностей и занимает несколько часов. Правда, с «тюнинговым» валом несколько сложнее - требуется специальная установка его положения.

Для этого удобнее всего использовать два индикатора часового типа: один - для точного определения ВМТ по днищу поршня через свечное отверстие, второй - для определения высоты подъема клапанов 4-го цилиндра при их перекрытии. Как только правильное положение вала «поймано», затягиваются болты крепления венца к ступице шкива (ремень ГРМ, естественно, должен быть уже натянут).

После окончательной сборки всей «навески» начинается этап настройки системы управления. Зажигание устанавливается традиционным способом, а вот с настройкой карбюратора придется повозиться. Газоанализатор здесь не очень удачный помощник - он позволит настроить карбюратор лишь предварительно. Для более точной настройки нужен или стенд, или специальный прибор - «лямбда-метр». Последний представляет собой индикатор в цепи обычного l-зонда, отражающий качество топливовоздушной смеси на разных режимах работы двигателя. Правда, здесь есть одна трудность: для установки l-зонда в выхлопную систему в приемной трубе необходимо просверлить отверстие и приварить гайку с соответствующей резьбой. По окончании настройки отверстие надо заглушить.

И, наконец, воздушный фильтр K&N устанавливают вместо штатного корпуса с фильтроэлементом с помощью специальных пластин и крепежа (входят в комплект фильтра).

Сделав несколько пробных поездок и убедившись, что машина вполне отвечает нашим ожиданиям, мы посчитали этот этап законченным (около 2,5 тыс. руб. за все работы). Оставались замеры на стенде.

Что получилось?

Повторное испытание на мощностном стенде показало: мощность двигателя заметно возросла - с 73 до 82 л. с.

Прибавка в 9 л.с. - это совсем немало. Правда, ощущается она только начиная с 4000 об/мин - на более низких оборотах обновленный двигатель (а именно так можно оценить наше вмешательство) проигрывает исходному стандартному.

Отметим, что проигрывает только на первом этапе тюнинга, пока реализован самый простейший вариант. В дальнейшем все характеристики можно будет «поправить» - для этого имеется немало возможностей. Но уже сейчас ясно - повышение максимальной мощности не дается даром. Как следует из полученных характеристик, максимальный крутящий момент упал почти на 10%, хотя при этом его характеристика здорово выровнялась, и в очень широком диапазоне оборотов (2000-5500 об/мин) момент стал практически постоянным.

Словом, мы получили совсем неплохой мотор для любителей спортивного стиля езды. Это - тоже результат. Теперь наш мотор легко раскручивается до 7000-7200 об/мин, и если правильно использовать его возможности, то машина становится заметно «веселее» на разгоне. Чего, собственно говоря, мы и добивались. Однако все возможности «простейшего» тюнинга на сегодняшний день уже исчерпаны - дальнейшее повышение мощностных характеристик возможно только при более глубоком «вторжении» в конструкцию двигателя. Об этом - в наших следующих публикациях.
====================
vaz.ee

Когда в 1999 году мы начали публикацию серии статей, посвященных форсированию двигателей (№№ 7-9/1999), специализированные мастерские (сейчас их называют тюнинговые ателье)

способные выполнить такую работу, можно было пересчитать по пальцам. За какие-то три года спрос на эти работы настолько возрос, что тюнинг двигателя теперь стал обыденным явлением.

Желая повысить мощность двигателя, любой владелец автомобиля без труда найдет не один десяток адресов (как крупных центров, так и обычных СТО), где можно «оттюнинговать» двигатель. Конечно, такая доступность должна радовать. Но настораживает то, что технически сложные работы по изменению конструкции двигателя (а именно в этом суть настоящего тюнинга) сегодня проводятся повсеместно. Да и более близкое знакомство с работой механиков, смело улучшающих двигатели посредством тюнинга, наводит на размышления.

Мода на... тюнинг?

Что, в самом деле, означает массовость тюнинга двигателя? Доступность услуги - это, понятное дело, хорошо. А вот ее качество? Тут возникает масса вопросов. Давайте разберемся.

Тюнинг двигателя предполагает, в первую очередь, вмешательство в конструкцию двигателя, худо-бедно, но уже отработанную производителем. Изменение конструкции мотора, как известно, иногда приводит и к отрицательным результатам. За примерами далеко ходить не приходится. На рост токсичности выхлопных газов обычно принято закрывать глаза. И хотя отечественные нормы токсичности весьма «мягкие», но даже и они нарушаются «по жизни» без стеснения. В этом же ряду и повышенный расход топлива. А если двигатель «тюнингуется» по максимуму, то вопрос об экономичности звучит наивно и, как правило, даже не обсуждается.

Хуже, когда изменения, повышающие мощность двигателя, негативно сказываются на его ресурсе и надежности. Обычно такая опасность возрастает с ростом степени форсирования, т.к. чем более мощным становится двигатель, тем больший объем изменений вносится в его конструкцию, и приходится использовать большое количество нестандартных комплектующих.

Картина получается безрадостная. Но, к счастью, такую работу делают не «на каждом углу». В тюнинговый «бум» вмешивается экономика. Действительно, специальные детали и узлы для тюнинга двигателя - вещи весьма и весьма дорогостоящие, их цена во много раз превышает цену стандартных аналогов. К тому же работы по доводке или, как стало модно говорить, «тюнингованию» двигателя тем дороже, чем больше их объем.

В результате имеем следующую ситуацию на рынке «тюнинговых» услуг: наибольшее распространение получил относительно «безопасный» тюнинг - самый дешевый, не требующий серьезного вмешательства в двигатель. Количество специальных комплектующих для такой работы также минимально.

Очевидно, что для проведения этих работ персонал высокой квалификации не нужен. В самом деле, установить новый распределительный вал с измененными фазами газораспределения - не слишком большая премудрость. А потому такую работу для самых распространенных у нас ВАЗовских моторов легко проделают (и не «задорого») в любой мастерской или СТО, в списке услуг которой значится слово «тюнинг». Хотя, справедливости ради, заметим: даже эту, самую простую работу сделать непросто, и механик без соответствующей подготовки может с ней не справиться.

Но не каждый заказчик согласен с таким минимумом. А тогда - и детали дороже, и работа сложнее. Вот и выходит, что дальнейшее движение к «тюнинговому Олимпу», т.е. максимальному форсированию двигателя, идет не без «потерь» - количество мастерских, предлагающих сложные работы, плавно уменьшается с ростом сложности переделок. В конце концов, это количество переходит в качество буквально: для желающих «выжать» из своего мотора максимум - выбор невелик.

Причина очевидна. Серьезные работы требуют глубоких знаний процессов, происходящих в двигателе, чувства «металла», когда механик, как говорят, «нутром чует» особенности работы каждого узла или детали. Специалистов такого класса немного, и их работа не имеет ничего общего с массовой «тюнингацией».

В подавляющем большинстве обычных мастерских глубоко в процессы работы двигателя не вникают. Раз мода рождает спрос, то за предложением дело не станет. А что предлагают? Все, что пожелаете. Хотите распредвал? Пожалуйста, прибавим 20% мощности. Доработать головку блока цилиндров? Нет проблем, еще 10%. Карбюратор, чип? Еще 10%, только платите.

Такая ситуация напоминает происходивщее лет 10-15 назад. Вспомните «бум», связанный с экономией топлива. Чего только тогда не предлагали! И подход был тот же: хочешь сэкономить 20% бензина - поставь вот такое устройство, еще 10% - вот это, а такая «примочка» даст еще... Кто-то даже посчитал, что если все эти способы реализовать одновременно, то бензин должен течь не из бака в двигатель, а наоборот.

Но в двигателе все сложнее - в нем с бешеной скоростью вращаются детали, текут потоки газов, и возникают огромные нагрузки. И все взаимосвязано: изменил что-то здесь - получил разницу там. А потому без серьезной подготовки трудно рассчитывать на успех мероприятия, называемого «тюнинг двигателя».

По нашему мнению, заказчику, желающему форсировать двигатель, не следует оставаться в стороне от технических проблем. Необходимо четко определиться в своих требованиях. Иначе велика опасность обратиться «не туда» и получить «не то», что хотелось.Короче говоря, прежде чем вторгаться в конструкцию двигателя, желательно не один раз подумать, осмыслить технические подробности способов его форсирования. А потому нелишне узнать, о чем говорит теория.

Мощность или момент?

Стремление многих водителей увеличить мощность двигателя своего автомобиля вполне объяснимо. И дело, конечно же, не только в русском характере, который «любит быструю езду».

Более мощный двигатель делает машину более маневренной, а при правильном управлении и более безопасной. Но вот вопрос: что такое мощность? С чем ее «едят», как ее почувствовать?

Может быть, более мощный двигатель - это тот, который лучше «тянет»? В смысле, позволяет автомобилю быстрее разогнаться? Что ж, посмотрим...

Вот самый обычный двигатель - ничего примечательного. А вот - похожий, но только его максимальная мощность вдвое больше. Пробуем разгон с места: с первым - все ясно, а со вторым - проблема: не тянет! То есть отпускаем, как обычно, педаль сцепления, нажимаем на «газ» и... ничего. Прямо «керогаз» какой-то, не разгоняется!

Ничего удивительного в этом нет: форсированный двигатель, в данном случае имеющий вдвое большую максимальную мощность, не работает на низких оборотах, к которым привык водитель. Его сначала нужно разогнать - увеличить обороты тысяч до четырех, не меньше. Только там, «на верхах», т.е. на высоких оборотах, реализуются все преимущества такого мотора. А теперь попробуйте с такими оборотами покататься по городу, где и светофоры, и пробки!

Парадокс и только: в нашем примере двигатель слабый, а «тянет» лучше! Значит, мощность - это еще не все. Иными словами, значение максимальной мощности еще не говорит о преимуществах, эту величину необходимо как-то реализовать на практике.

Почему же «слабый движок» лучше тянет? Все просто - его крутящий момент оказался выше в большей части диапазона числа оборотов. Более того, значение крутящего момента у него имеет пологую характеристику, т.е. слабо изменяется по частоте вращения. А это сразу чувствует водитель - не надо «газовать», машина послушно отзывается на педаль акселератора.

Получается, что величина крутящего момента более значима в обычных условиях дорожного движения.

Попробуем охарактеризовать влияние крутящего момента двигателя на разгонную динамику автомобиля. Ускорение автомобиля (a) можно оценить, используя известный закон Ньютона. Пренебрегая в первом приближении силами трения, сопротивления и инерции вращающихся масс, запишем:

F= m•a , (1)

где F - сила «тяги», ускоряющая автомобиль; m - его масса.

В свою очередь, сила F связана с крутящим моментом Mк ведущего колеса следующим соотношением:

F = 2 MкDк ,

где Dк - диаметр колеса.

Крутящие моменты двигателя Me и колеса Mк связывает простое соотношение:

Mк = iт Me 2 ,

где iт - передаточное число трансмиссии. Подставляя значения F и Mк в уравнение (1), находим значение ускорения автомобиля:

a = MeiтmDк . (2)

Таким образом, чем выше значение крутящего момента двигателя, тем больше ускорение автомобиля. Если учесть, что величина крутящего момента не постоянна, а зависит от многих факторов (к примеру, от частоты вращения), то при разгоне ускорение автомобиля также будет изменяться.

А как же быть с мощностью? Этот параметр, по нашему мнению, более нагляден, когда нужно определить максимальную скорость, до которой способен разогнаться автомобиль. В этом случае мощность двигателя Ne идет на преодоление аэродинамического сопротивления Na, сил трения качения колес Nк и сопротивления в трансмиссии Nm:

Ne=Na+Nк+Nm . (3)

Другими словами, чем выше мощность двигателя, тем при прочих равных условиях может быть выше максимальная скорость автомобиля. При этом не следует забывать, что мощность двигателя, в свою очередь, зависит от частоты вращения коленвала и связана с величиной крутящего момента простой зависимостью:

Ne = Men9550 ,

где n - частота вращения коленвала (об/мин).

Крутящий момент и мощность двигателя передаются на колеса через трансмиссию. Очевидно, что разгонная динамика и максимальная скорость автомобиля зависят от передаточных чисел в КПП и в главной передаче. Эти параметры чрезвычайно важны для реализации всех потенциальных возможностей двигателя. Правильно подобранные передачи в трансмиссии способны значительно повысить эксплуатационные свойства автомобиля, а ошибки в их подборе могут нивелировать результат всех усилий по форсированию двигателя.

Так или иначе, а любая реконструкция двигателя с целью повышения его мощности - работа комплексная, основанная на четком представлении о том, что все-таки мы хотим получить, как это сделать и можно ли это сделать вообще. Здесь без знания рабочих процессов, протекающих в двигателе, никак не обойтись.

О чем говорит теория?

Чтобы окончательно разобраться с моментом и мощностью двигателя, обратимся непосредственно к теории его работы. При работе двигателя давление в его цилиндрах изменяется от минимума на такте впуска до максимума при сгорании топлива в начале рабочего хода. Характер изменения давления в цилиндре можно изобразить графически, связав его с текущим объемом цилиндра, который меняется от минимума, равного объему камеры сгорания (Vкс) в верхней мертвой точке (ВМТ), до максимума - полного объема цилиндра (Vкс+Vh) в нижней.

Это известная индикаторная диаграмма - зависимость давления в цилиндре Р от его текущего объема V В таких координатах, гласит теория, площадь под кривой представляет собой работу, совершенную в данном цикле.

Верхняя часть индикаторной диаграммы, ограниченная кривыми процессов сжатия и расширения (рабочего хода) в цилиндре, - это так называемая индикаторная работа цикла Li, т.е. работа, вычисленная по индикаторной диаграмме. Нижняя часть - под кривыми впуска и выпуска - работа насосных ходов Lнх. Если вычесть из полезной работы Li работу насосных ходов Lнх, а также работу Lм, затраченную на преодоление сил трения и механического сопротивления (в том числе, на привод агрегатов), то получим эффективную работу цикла двигателя:

Le=Li-Lнх-Lм . (4)

Величина работы не наглядна и мало что может рассказать о процессах, протекающих в двигателе. Поэтому в теории часто оперируют удельными параметрами. К примеру, если работу, совершенную за цикл, отнести к объему цилиндра Vh, можно получить удельный параметр, удобный для сравнения разных двигателей. Это - так называемое среднеэффективное давление цикла двигателя:Ре = LeVh . (5)

Далее легко вычислить значения крутящего момента Me:

Me =79,6 iVh Pe (6)

и мощности двигателя Ne:

Ne = Men9550 = iVh Pen120 , (7)

где i - число цилиндров.

Итак, некоторые зависимости получены, попробуем их проанализировать.

С точки зрения практики

Первое, что бросается в глаза: крутящий момент явно не зависит от частоты вращения коленвала, а определяется лишь объемом двигателя iVh и среднеэффективным давлением Pe. Очевидно, имеются два пути повышения Me: увеличение объема двигателя и повышение его Pe.

С объемом все понятно - чем больше, насколько позволяет конструкция двигателя, тем лучше. С параметром Pe «бороться» сложнее. Но индикаторная диаграмма подсказывает, что параметр Pe - это давление, которое можно повысить, увеличив степень сжатия. Правда, резервов тут немного - возможности этого способа ограничены детонацией.

Можно подойти и с другой стороны. Чем больше топливовоздушной смеси мы «загоним» в двигатель, тем, очевидно, больше тепла выделится при сгорании топлива в цилиндре и тем выше будет давление в нем.

Улучшить наполнение цилиндра смесью можно путем увеличения проходных сечений и изменения формы впускных каналов, клапанов и седел, доработки камеры сгорания, а также расширением фазы (продолжительности) впуска. Положительно повлияют и мероприятия, направленные на снижение гидравлического сопротивления впускного тракта: ликвидация «уступов» и острых углов в местах стыка деталей, установка воздушного фильтра с низким сопротивлением.

Кардинальным средством повышения наполнения, а следовательно, и давления в цилиндре следует признать наддув. Однако этот способ сложно реализовать в «тюнинговой» практике, т.к. он связан с большим объемом переделок в двигателе.

Значительное влияние на величину Pe оказывает работа выпускной системы. «Неправильный» выхлоп может «задавить» двигатель, повысив давление в цилиндре на такте выпуска, что, согласно индикаторной диаграмме, приведет к росту работы насосных ходов. Кроме того, большое сопротивление выхлопной системы препятствует наполнению цилиндра смесью, поскольку не все выхлопные газы успеют покинуть цилиндр и займут часть объема свежей смеси. В этой связи не менее важны проходные сечения выпускных каналов, размеры и форма тарелок и седел клапанов, а также продолжительность (фаза) выпуска.

Снова обратимся к формуле (4) работы цикла двигателя. Очевидно, работа, затрачиваемая на преодоление механических потерь, - «вещь» вредная, поскольку уменьшает значения Pe, Me и Ne. Но и тут есть резервы. Можно снизить потери на преодоление сил трения в цилиндропоршневой группе целым рядом мероприятий: снижением массы поршней и шатунов, уменьшением размера юбки поршней и толщины поршневых колец, переносом места фиксации шатуна от осевого смещения в бобышки поршня и др. Кроме того, имеет значение и снижение разбрызгивания масла коленвалом путем специального направления масла, сливаемого из головки блока, установки маслоотражающих экранов и т.д. Правда, эти мероприятия, в основном, эффективны на высоких оборотах, когда потери на преодоление трения особенно велики.

Перечень возможных переделок можно продолжать, однако не стоит надеяться, что отдельно доработанный узел или деталь сразу даст прибавку мощности или крутящего момента процентов этак на ...дцать. Простой пример: увеличиваем объем цилиндров на 20%. Согласно формуле (6), это должно привести к пропорциональному повышению значения крутящего момента. Но не приведет! В двигателе все взаимосвязано - оставленные без изменения системы впуска, выпуска и управления не обеспечат хорошего наполнения, сгорания топлива и очистки (продувки) цилиндров увеличенного объема. В результате снизится значение Pe, и реальная прибавка крутящего момента окажется раза в полтора-два меньше, да и то лишь на малых и средних оборотах.

Кстати, о системе управления. Так называемый «чип-тюнинг» обеспечивает прибавку мощности всего на 5-7%. В то же время после «глубокого» тюнинга механической части двигателя настройка системы управления может дать намного больший эффект.

Итак, пути повышения мощности двигателя определены. Кажется, осталось запастись соответствующими деталями и - к двигателю. Однако не будем торопиться - сделать это мы всегда успеем.

Еще немного теории

Как мы уже отметили, в двигателе все взаимосвязано. На практике это означает, что изменение в одном узле ведет к перемене всего рабочего процесса: от воздухозаборника до среза выхлопной трубы. Причем на разных режимах любое вмешательство оказывает различное воздействие. Более того, то, что хорошо на одном режиме, может оказаться плохо на другом.

Проведем такой эксперимент: разгон автомобиля от оборотов холостого хода двигателя до максимальных. Реально это выглядит следующим образом: скорость 30 км/час, 4-я передача, «газ в пол». Вначале «тяги» почти нет - автомобиль едва разгоняется. Затем ускорение увеличивается, достигая максимума, и снова уменьшается, пока вблизи максимальных оборотов двигатель не «зависает».

Что это? На практике мы повторили испытания так называемой внешней скоростной характеристики двигателя - зависимости Me и Ne от частоты вращения коленвала при полностью открытой дроссельной заслонке.

Заметили, что наибольшая «тяга» - где-то на средних оборотах? Максимум крутящего момента находится здесь же. А вот при уменьшении или увеличении частоты вращения момент падает. Почему?

Причин этого явления несколько. Отметим, что максимумы значений Pe и Me в области средних оборотов не случайны, поскольку это - наиболее часто используемые в эксплуатации режимы: конструкторы намеренно «настраивают» все системы двигателя именно на средние обороты.

Что такое «настройка»? Попробуем объяснить. Периодичность (1 раз за 2 оборота коленвала) процессов впуска и выпуска в цилиндре вызывает значительные колебания давления и скорости газа в каналах двигателя. Поток газа, движущегося по каналу, обладает частотой собственных колебаний, зависящей от температуры газа и геометрии канала. Так вот, можно подобрать геометрию каналов, в первую очередь, их длину (т.е. настроить системы впуска-выпуска) таким образом, чтобы в период впуска повысить давление перед впускным клапаном, снизив его в цилиндре, а в период выпуска снизить давление на выпуске за выпускным клапаном.

В результате наполнение цилиндров увеличится (это явление называется газодинамическим наддувом), одновременно улучшится и очистка цилиндров от остаточных газов в конце выпуска.

Кроме того, на диапазон средних оборотов одновременно «настраивают» и фазы газораспределения: опережение открытия относительно мертвых точек впускного и выпускного клапанов, их перекрытие (длительность одновременного открытия) и продолжительность впуска и выпуска по углу поворота коленвала. Именно фазы газораспределения в сочетании с правильно подобранной геометрией каналов и дают максимум наполнения цилиндров в выбранном, однако довольно узком, диапазоне частоты вращения.

Естественно, отклонение в сторону меньших оборотов делает продолжительность фаз «избыточной»: возникает заброс выхлопных газов во впускную систему, ухудшается очистка и наполнение цилиндров. При повышении же оборотов фазы оказываются слишком «узкими» и ограничивают как очистку, так и наполнение цилиндров. Результат - значения Pe и Me падают как при уменьшении, так и при увеличении числа оборотов. Причем в области больших частот вращения величина Me дополнительно снижается за счет быстрого роста механических потерь.

Мощность двигателя Ne, также как и его момент Me, имеет максимумы, которые за счет влияния частоты вращения (см. формулу 7) сдвинуты в сторону повышенных оборотов.

Теперь, зная характер изменений значений Me и Ne от частоты вращения, попробуем изменить «настройки». В первую очередь «расширим» фазы газораспределения. Максимумы значений Me и Ne переместятся в область более высоких оборотов, при этом заметно увеличится максимальное значение Ne. Именно этот эффект и лежит в основе форсирования двигателя по частоте вращения: так строят, к примеру, все спортивные моторы.

От идеи до практики

Итак, основные закономерности мы выяснили. Попробуем теперь выбрать схему, по которой можно форсировать двигатель.

Очевидно, первое, что надо решить, - насколько необходимо увеличить объем цилиндров. Если поставлена цель - достичь максимального эффекта при форсировании, то объемом пренебрегать нельзя, даже если в нашем распоряжении не так много возможностей: повышение мощности и момента прямо пропорционально объему цилиндров.

Следующее по значимости - это фазы газораспределения. Необходимо сделать выбор: «строим» ли мы «скоростной» двигатель, который будет «раскручиваться» на высоких оборотах, или «моментный», для работы на средних оборотах. Это, без сомнения, зависит от темперамента водителя и стиля езды. На этом этапе предстоит выбор распределительного вала для нашего мотора - именно параметры вала определяют характер изменения момента и мощности по частоте вращения коленвала.

Затем все узлы и детали двигателя «настраиваются» на объем двигателя, но главное, на соответствие выбранному распределительному валу. Другими словами, весь клапанный механизм, каналы впуска и выпуска, цилиндропоршневая группа - все «подстраивается» под характеристики распределительного вала.

Какой бы мотор ни получился в результате - это будет уже новый, другой мотор. И им надо по-другому управлять. То есть по-иному, но точно регулировать состав топливно-воздушной смеси и угол опережения зажигания. Поэтому следующий этап работы - настройка системы управления двигателем. Без этого новый двигатель не только не «выдаст» всех своих возможностей, но может проиграть своему стандартному аналогу. Особенно это касается двигателей с электронными системами впрыска топлива.

И, наконец, трансмиссия. Ее, возможно, придется дорабатывать, к примеру, изменять передаточные числа главной передачи или отдельных передач. Ведь двигатель, какой бы хороший он ни получился, работает не сам по себе, а вращает колеса автомобиля.

Реализация на практике всех этих этапов - задача непростая, и ее сложность возрастает прямо пропорционально росту мощности и крутящего момента, которые мы хотели бы получить. Чтобы добиться хороших результатов, необходимы опыт и знания, специальный инструмент и приспособления, станочная база, детали и комплектующие. Кроме того, результаты работы необходимо проконтролировать не субъективно, по ощущениям водителя, а объективно, испытав двигатель на специальном стенде.

Обо всем этом, а также об экономической стороне вопроса, мы постараемся подробно рассказать в наших будущих материалах.
==================
vaz.ee


[ Назад | Начало | Наверх ]

По вопросам организации обращайтесь по телефону: 8-902-269-09-37 (Сергей)
По вопросам создания сайтов в Екатеринбурге и области: 8-965-508-13-38 (Александр)
The release is prepared by exstrim-bog.ru target="index">Екстремальные гонки
The release is prepared by exstrim-bog.ru target="index">Екстремальные гонки