Фотогалерея

, Гость!

Ник:
Пароль:


Войти через другие сервисы. Самый удобный и проверенный способ моментально стать пользователем нашего портала.

Статистика

Понедельник393
Вторник441
Среда534
Четверг477
Пятница273
Суббота417
Воскресенье415
Сейчас online:15
Было всего:4968353
Рекорд:4870

Кто онлайн:

Рейтинг сайта

УралWeb Рейтинг@Mail.ru

Яндекс.Метрика

HotLog Яндекс цитирования

Интересно

^^^Здесь может быть ваше фото^^^


Поиск
Поиск


Проще отработать год на заводе, чем получить от государства выплаты по рождению.


Не зря я отметил это жирным шрифтом. В городе Богданович злосчастный кабинет №7 знают многие мамы, и знают они так же что сидят там далеко не понимающие люди, раз они не могут войти в положение, объяснить сразу, а не заставлять человека вставать 5 раз в 6 утра , бежать к ним, и потом смотреть как человек плачет от того , что они видите ли забыли сказать что нужна вот ещё такая справочка или такая, а срок действия справок уже истекает, и что теперь- ВСЁ ПО НОВОЙ!?!???

Начну пожалуй с самого начала:
В сентябре у меня родился замечательный малыш, и по приезду домой мы с женой начали собирать справки, конечно перед этим она сходила в кабинет №7 нашей администрации. Ей там объяснили какие справки надо.
Основная проблема со справками была у меня на работе, так как головняк был далеко от работы и добраться до него проблематично, но я сделал эти справки.

Жена сходила к кровопийцам в 7 кабинет, ей от ворот поворот, мол неправильно справки, дали пример, бля, ну сразу нельзя было этого сделать, человек ведь не каждую неделю оформляет пособие, а если проблема с бумагой, чтоб напечатать примеры справок (шаблоны) и дать человеку, тогда я х.з куда деваются те деньги от пособий, от которых отказались отчаявшиеся, из которых выпили всю кровь. признаюсь честно, у нас уже были такие мысли!!!
Дело в том, что переделав справки по новой, жена пришла снова к этим кровопийцам, тут оказалось что надо справку с места учёбы жены, о чём опять же сразу нельзя было сказать?!! Сказали на 3 поход к ним, тут уже я начал закипать, ну что за звери блядь, нравится им что ли когда к ним бегают часто и попросту, они себе работу создают лишнюю таким образом, тоже не от большого ума!
В общем, сделала все документы, я взял справку с места жительства, с работы, и она встав в 6 утра вновь пошла к кровопийцам в надежде что всё, ну наконец-то все справки на руках, ан не тут то было, мы же забыли куда шли - К КРОВОПИЙЦАМ!!!

В общем оказалось, справка с работы о зарплате за последние 3 месяца уже не подходит, хотя в прошлый раз всё было нормально! Меня скоро нахуй посылать на работе будут, уже говорили что мол что за ебатория у вас там такая в Богдановиче, чтоб пособие получить нужно миллион справок, и сколь ни делай всё не то!!!

Не знаю, я уже заебался, и жена думаю тоже...
Против власти не попрёшь, государство сделало всё, чтоб человек просто заебался, оформляя пособие или какие либо другие документы.
Кабинет номер 7 это двери в АД, где из тебя высосут последнюю кровь.

В общем забраковали мои справки с работы, мол уже не подходят, у жены уже заканчиваются сроки других справок, соответственно всё по новой надо собирать, пиздец, молча проговорил я.

Но это не всё, в очередной раз мы услышали ещё новшество, мол надо принести ксерокопию договора о съёме жилья, так как мы снимаем, ну блядь это пиздец, А РАНЬШЕ ТО НЕЛЬЗЯ БЫЛО СКАЗААААТЬ!!!??

Я уже читал в газете,знамёнка вроде,о хамстве со стороны сотрудников энного кабинета КРОВОПИЙЦ, писала молодая мама. Суть помню, мол плачут детки маленькие в коридоре, а из кабинета вышла мадам и гаркнула, мол - ЗАТКНИТЕ СВОИХ ДЕТЕЙ!!! Да нахуя таких людей пустили работать с людьми, их в клетке держать надо, чтоб не покусали в следующий раз детишек. Матери молодые в чём виноваты что не с кем оставить ребёночка, а пособие это грёбаное ой как нужно,А КРОВОПИЙЦЫ НЕ ПОНИМАЮТ ЭТОГО!!!

Я очень надеюсь что энная статья будет прочитана КРОВОПИЙЦАМИ из 7 кабинета! и они сделаю выводы о своей проф пригодности, хотя бы откроют свои нормативные документы, почитают, сделают памятки у себя под носом, о том что нужно сразу собрать молодой маме, какие справки и где брать. А не так что каждый раз новая справка нужна, а в прошлый раз её не надо было!

Может быть кто то с аппарата управления прочитает эту статью, и тоже сделают выводы от том кто находится у них в подчинении, и что творится в кабинетах власти!

Я искренне извиняюсь за мат, но это уже накипело. Честно скажу, будем или нет мы теперь оформлять пособие дальше или уже сдадимся, на что наверное надеются чиновники и эти кровопийцы из 7 кабинета, ведь они сэкономили для бюджета а соответственно им с этого премия наверняка! В общем будущие мамочки, если вы собираетесь идти в 7 кабинет, то просите чтоб сразу всё объяснили, что , где, откуда, когда?? . . .Если не спросите, то как и мы, люди которые мало образованы в этой сфере, попадёте под каток, где вас будут топить новостями мол не то и не так, а вообще не правильно, переделать, и ещё одна справка нужна вот такая.......В общем пиздец!

Извиняюсь за мат ещё раз, всё что наболело написал!

И вот на последок статья, наконец то нашёл про этих КРОВОПИЙЦ: http://bgdn.ru/news/kabinet_7/2011-11-04-1204

почитайте, сделайте выводы. Я не знаю, конечно они так и будут работать, но я очень хочу чтоб они знали оценку своей работе!!! К большому сожалению у нас всё сделано так, чтоб замучить человека, чтоб он всё бросил со словами - "Да пошло оно всё..."

================
Борисов Александр. 29 ноября 2011 года.

Если вам понравилась новая Subaru Impreza WRX STI, то, наверняка, придется по душе и этот необычный концепт. Новинка, разработанная независимой компанией, называющей себя Grid, во многом уникальна.


Мастера из Grid во многом преуспели – классно смотрится широкая агрессивная посадка автомобиля, стремительные формы крыльев, выпирающее подкапотное пространство, а также сочетание ярко-синего кузова World Rally и позолоченных ободов колес.
Subaru Impreza

В то же время концепт выглядит так, словно слон посидел на современном STI от Subaru и сделал его плоским, как блин. Взглянув на клиновидный кузов сзади, на ум приходит другой замечательный гоночный автомобиль с оригинальным дизайном – Lancia Stratos от Bertone.
Subaru

Неофициальный концепт STI, безусловно, заслуживает внимания, и если бы компания Subaru пожелала потратить время, деньги и энергию на серийное воплощение этой работы, а также вернуться к программе World Rally Championship, продажи компании, бесспорно, возросли бы на порядок.
Субаро

Кстати, после покупки такого автомобиля неплохо бы устроить праздник, провести который поможет профессиональный ведущий Владимир Асон. Этот мастер своего дела сделает праздничный вечер незабываемым на всю жизнь.

===========
auto-novosti.ru

Отправляясь в романтическую поездку по Италии Вы наверняка посетите Венецию – прекрасный город, большая часть которого находится в воде. И, конечно же, прокатитесь по знаменитым венецианским каналам на гондоле.

Предприимчивые итальянцы специально для любителей автомобилей подготовили плавучие деревянные макеты известнейших авто, на которых при желании можно совершить морскую прогулку.
title
title
title
title

По материалам topspeed.com

Наверняка вы уже слышали о полицейской Lamborghini Gallardo, гоняющей по итальянским автострадам и ведущей охоту на нарушителей. Или о суперкаре Porsche 911 Carrera S для немецкой полиции, рассекающим по германским автобанам.

Небольшая голландская компания Spyker, вдохновившись таким опытом своих зарубежных коллег и недавним приобретением формульной команды Midland, решила преподнести подарок родной голландской полиции - выбор пал на Spyker C8 Spyder с 4,2-литровым двигателем, который выдаёт 400 лошадиных сил, разгоняя автомобиль до 300 километров в час.
Хочется порекомендовать голландским полицейским все же быть аккуратными за рулем Spyker C8 Spyder и исключить из своих приемов задержания автоугонщиков такой элемент как таран - ведь стоит этот “полисмобиль” около 220 тысяч евро.
title
title

По материалам drive.ru

Международный союз биатлонистов (IBU) назначил трехдневное слушание дела об употреблении допинга Екатериной Юрьевой, Альбиной Ахатовой и Дмитрием Ярошенко на 8-10 мая. Дело российских биатлонистов будет разбираться в Зальцбурге специальной комиссией IBU по случаям применения допинга, сообщает агентство "Весь Спорт".

Как рассказала исполнительный директор Союза биатлонистов России (СБР) Елена Аникина, эта комиссия была создана в январе 2009 года. Ранее случаи употребления допинга разбирал исполнительный комитет IBU.

По словам Аникиной, состав российской делегации формируется в настоящее время. В Зальцбург наверняка поедет сама Аникина и адвокат Тагир Самокаев, который представляет интересы российских биатлонистов с февраля. Кроме того, российскую сторону будут представлять иностранный юрист и иностранный специалист по медицинским вопросам.

Юрьева, Ахатова и Ярошенко попались на употреблении рекомбинантного эритропоэтина (rEPO) в декабре 2008 года. Допинг-пробы "В" были вскрыты в начале февраля 2009 года, и их результат также оказался положительным. Все биатлонисты заявили, что не знают, каким образом в их организм попал запрещенный препарат.
=================
www.lenta.ru
Для того, чтобы отремонтировать двигатель, особенно если поломка серьезная, его нужно снять с автомобиля. Как же его снять, не сломав при этом остальные узлы и детали, которые находятся под капотом. Конечно лучше всего, если работу эту будет делать профессиональный ремонтник, но в жизни всякое бывает. Как снять двигатель?

Как снять двигатель


Рассмотрим на примере автомобиля Ваз 2110. Для начала отсоединяем клеммы аккумуляторной батарей, прежде всего это касается минусового провода. после чего аккуратно снимаем капот. Делается это легко, стоит только разобраться. Так что не спешите, все внимательно изучите. Далее нужно слить с мотора все масло и охлаждающую жидкость. Опять таки должна присутствовать аккуратность, делать нужно в приспособленном месте, не в коем случае не на голой земле, потому что если масло попадет в почву, то расти там уже ничего не будет, плюс к этому получите штраф от экологов. Следующий этап - снимаем коробку передач, сцепление и приемную трубу. После вытаскиваем шланги подвода и слива топлива. На автомобиле Ваз 2110 это происходит относительно свободно, а вот Ваз 2111 и Ваз 2112 могут преподнести сюрпризы, так что там делайте все вдвойне осторожно, немного стравливайте давление в топливной системе. Далее отсоединяем тросик привода дроссельной заслонки двигателя. Отсоединяем корпус воздушного фильтра, опять таки на Ваз 2111 и ваз 2112 есть сложности, снимается корпус вместе с показателями массового расхода воздуха. Не забывайте про тормоза, отсоедините шланг вакуумного усилителя тормозной системы и электропневмоклапана отопителя от ресивера, это на Ваз 2111 и Ваз 2112, на Ваз 2110 вместо нее просто впускной коллектор. Автоаксессуары сейчас очень часто покупаются подростками, у которых уже есть свои автомобили. Зачастую, покупку автоаксессуаров и установка их на автомобиль, по их мнению и называется тюнингом. Хотя это конечно же не так.

Как снять двигатель


Удаляем шланги системы охлаждения от выпускного патрубка головки цилиндров и от подводящей трубы насоса. Теперь нужно снимать сам двигатель. Делать это желательно снизу, то есть автомобиль поднимается по специальному механизму, под него подкатывается тележка на колесиках и мотор удаляется с моторного отсека. После снятия двигателя нужно его прочистить, наверняка он весь в масле. Ремонт может быть различным по сложности, но раз вы сняли для этого двигатель, то не помешает полностью осмотреть его на предмет дефектов и поломок. После того, как ремонт завершен, нужно хорошо смазать все элементы двигателя и аккуратно начать устанавливать на месть. Происходит это в обратном порядке. Вы подкатываете двигатель на место, на него сверху опускают автомобиль и все закрепляется. Как писалось выше, желательно, если ремонтом будет заниматься опытный человек. Ведь если за дело возьмется человек, который не занимался до этого ничем подобным, то в лучшем случае он затянет процесс на долгое время. А скорее всего просто сломает что нибудь и это выльется в еще более дорогостоящий ремонт автомобиля или даже полную замену двигателя.
Замена главной пары (вторичного вала и главной шестерни дифференциала) в пятиступенчатой коробке передач автомобилей семейства ВАЗ 2108-2112, с передаточным числом 3.7 или 3,94 (стандарт) на 4.13 для когда то выпускаемых "зубил" с двигателями 1100 и 5-ти ступенчатой КПП, открывает возможность улучшить динамику вашего автомобиля не прибегая к форсировке мотора.

В городе расход топлива не изменится, на трассе возможно увеличение на 3% при движении с макс скоростью, что несущественно, заметно же улучшится динамика, двигателю будет проще выходить на максимальные обороты, пятая передача станет более рабочей, появиться ровный подхват на всех передачах, станет легче трогаться с места, преодолевать крутые горки, реже придется переключать передачи при спокойной езде или при движении в городском потоке.

Это важно!!! Вазовские дилеры получили циркуляр, который фактически сообщает о начале отзыва всех автомобилей ВАЗ, оснащенных КПП 2110 и выпущенных до мая 2000 года. Причина конструктивный дефект коробки передач, точнее полый вторичный вал внутри которого идет сквозной канал. Плоское стопорное кольцо вторичного вала может разрушить вал пополам. Дефект опасен: обломки попадают в зацепление шестерен и КПП заклинивает. Бывали случаи, когда обломки вторичного вала пробивали насквозь картер КПП ( так называемая «рука дружбы» ). После дополнительных испытаний ВАЗ изменил форму стопорного кольца, что по словам представителей завода,сняло проблему. На самом деле проблему принципиально не решили, тк. только замена полого 2110 вторичного вала КПП на сплошной 21083 может дать 100% гарантию. Увы, вторичные валы продолжают ломаться. Именно поэтому рекомендуюпереход на ГП 4,13 со сплошным вторичным валом, еще раз подчеркиваю – именно со сплошным, тк. на рынке есть более дешевые варианты ГП 4,13 с полым вторичным валом 2110. Пожалуйста, не пытайтесь сэкономить, в итоге замена картера КПП со всей начинкой выйдет существенно дороже.


P.S. Почему 4.13 !?
1. не требует установки довольно дорогого и нагруженного6-го ряда.
2. реально улучшается разгонная динамика, без увеличения расхода топлива
3. обороты при максимальной скорости вырастут всего на 500 об/мин
4. максимальная скорость достигается именно с 4,13 на 5-й и она не в коем случае не будет меньше, чем на стандартной КПП, наоборот пара позволит выкрутить двигатель до максимальных оборотов и соотвественно увеличить максимальную скорость. Если будете повторять ошибки « умных механиков», рекомендующих установку пары 4,3 на стандартный ряд, то действительно максималку потеряете, в силу того, что обороты двигателя на максималной скорости увеличатся примерно на 1000 об/мин и двигатель будет попросту«закручиваться». Передачи укоротятся настолько, что трогатся можно будет на 2-й , а первая превратится в суперпонижающую, как на хорошемвнедорожнике. Этот вариант особенно рекомендуется желающим использовать машину в качестве трактора, для освоения целинных земель.

Для достижения максимальной динамики разгона на моторах обьемом 1,5 л. и выше рекомендуется установка 18 ряда КПП с главной парой 3,9. Благодаря этому Вы получите 1-ю длинную ( на ней можно разогнатся до 60км/час, что очень удобно в городе, светофорных гонках и стритрейсинге –это существенно экономит время на переключение и позволяет значительно опередить соперника ) и 2,3,4,5 сближенные укороченные передачи. Это позволит Вам держать мотор воптимальном рабочем диапазоне ( не ниже оборотов максимального крутящего момента ) и при переключении терять минимум кол-ва оборотов за счет сближенных передач. Хозяева переднеприводных машин со станд. КПП наверняка знают, что даже если сильно выкрутить двигатель на 1-й передаче, при переключении на 2-ю обороты сильно падают, снижается динамика разгона. Виной тому-слишком большой разрыв между передаточными числами. 18 ряд КПП расчитан таким образом чтобы обеспечить уверенный, равномерный разгон на всех передачах (1-я и 2-я взяты в качестве примера, на самом деле сближены все передачи.Т.к. передачи сближены – существенно снижается нагрузка на синхронизаторы ( а это одни из самых нагруженных, капризных и хрупких элементов КПП ) и значительно увеличивается ресурс КПП.Достаточно вспомнить стандартный дефект КПП 2108-2112: проблемы со включением 2-й передачи, тк. передаточные числа 1 и 2 передач очень удалены друг от друга, и большая нагрузка на синхронизатор 2-й передачи в первую очередь «убивает» именно его. Когда изношенный синхронизатор не справляется со своими обязанностями, он издает неприятный шум и при переключении передач слышен характерный щелчок, а иногда и треск, т.к. кольцо не может уравнять скорости вала и шестерни. При эксплуатации КПП с такими синхронизаторами шестерни КПП очень быстро выходят из строя, тк. зубья и шлицы выкрашиваются. КПП начинает гудеть-выть и впоследствии заклинивает.18-й ряд хорош еще и тем, что позволяет сэкономить на главной паре, т.к. ГП на которую он ставится – 3,9 , является стандартной для большинства КПП.

Модернизация подсветки кнопок (или введение подсветки в случае с кнопками 2108) наверняка придётся по душе тем, кто всеръёз задумался о лёгком рестайлинге приевшегося интерьера в машине. Порядок действий следующий:

1. снимаем консоль в сборе с кнопками и несём домой.
2. Вытаскиваем кнопки из консоли.
3. Плоской отвёрткой поддеваем крышечку кнопки (фото 1) и вытаскиваем её.

подсветка кнопок


Тут же выясняем, как крепится крышечка (видим 2 защёлки)
4. Если кнопка 2108, то лампочки в ней нет, если 21083, то вытаскиваем лампочку.
5. Смотрим на внутреннюю часть крышечки. Если она такая, как на фото 2, пропускаем следующий пункт.

подсветка кнопок


6. Если видим там зелёный светофильтр, выдираем его оттуда подручными средствами (я по углам выцарапывал шилом, потом нагретым паяльником делал бугорок, за который вытаскивал светофильтр утконосами).
7. Припаиваем резистор номиналом 610...1500 Ом к любому из выводов светодиода (их внешний вид на фото 3), оставляя длинными 2-й вывод светодиода и 2-й вывод резистора. Если кнопка 21083, изолируем при помощи термоусадки резистор вплоть до головки светодиода, загибаем длинные выводы так, чтобы высота всей светодиодно-резисторной конструкции была около 15 мм. Разгибаем выводы так, чтобы они с небольшим усилием вошли в контакты, откуда вытащили лампочку.

подсветка кнопок


Если кнопка 2108, выводов для подсветки нет. 3 варианта: в магазине покупаем кнопку 21083 и см. выше, изготавливаем контакты самостоятельно, либо выводим длинные выводы резистора и светодиода на места контактов 6 и 7, изгибаем так, чтобы можно было посадить колодку с разъёмами. Предварительно изолируем термоусадкой резистор вплоть до головки светодиода.
9. Проверяем работоспособность путём подачи 12 В от компьютерного блока питания на выводы подсветки. Не горит? Меняем полярность. Отмечаем тот вывод, куда подан "+" при светящемся светодиоде.
10. Собираем кнопку, вернув обратно крышечку. Следим за тем, чтобы крышечка не оказалась перевёрнутой на 180 градусов.
11. Повторяем процедуры с каждой кнопкой и выключателем наружного освещения.
12. Вставляем светодиод в ручку включения вентилятора отопителя, в верхнюю часть пепельницы и т.д., строго как написано в статье "Светодиодная подсветка ручек открывания дверей, пепельницы, подконсольного пространства".
13. Несём консоль с установленными кнопками в машину.
14. Выдрав из неё выключатель наружного освещения, одеваем на него колодку и включаем "габариты". Проверяем тестером на двух самых нижних контактах колодки полярность.
15. От "Плюсового" контакта выключателя наружного освещения протягиваем провод, подсоединяя параллельно каждый из отмеченных выводов на кнопках (их помечали как "положительные" в п. 9). Также тянем и "минус". Наиболее изящным считаю установку на кнопки таких же колодок, как на "аварийке". И провода обжимаем в такие же контакты, которые используются в колодках на кнопки.
16. Всё.
По расчёту номиналов токоограничивающих резисторов можно почитать тут. Немного по-крестьянски, но закон Ома вроде описан :-)
По выбору светодиодов. Я просто пришёл в магазин радиодеталей и выбрал то, что устраивало по цене, цвету и ярко светило.
Одна из самых популярных тем во всех “курилках”, так или иначе связанных с тюнингом авто, – выпускные системы двигателей.

По крайней мере, я чаще отвечаю на вопросы о выхлопе, чем о клапанах, головках, коленвалах и прочих составляющих настройки двигателей. Причем диапазон вопросов примерно следующий: от “скажите, а как применить формулу для вычисления резонансной частоты (приводится соотношение для резонатора Гельмгольца) к четырехдроссельному впуску?” до “мне друг подарил “паук” со своего спортивного “гольфа”. Сколько прибавится лошадиных сил, если я его установлю на свой автомобиль?” или “ я строю себе мотор. Какой глушитель купить, чтобы было больше мощности?”, или “сколько лошадиных сил прибавится, если я вместо катализатора установлю резонатор?”. Причем во всех вопросах красной линией проходит добавочная мощность.

выпускная система


ТАК ДАВАЙТЕ ДЛЯ НАЧАЛА РАЗБЕРЕМСЯ, ГДЕ ЖЕ ЛЕЖИТ ЭТА ДОБАВОЧНАЯ МОЩНОСТЬ. И ПОЧЕМУ ВЫПУСКНОЙ ТРАКТ ВЛИЯЕТ НА РАБОТУ МОТОРА.

Если мы все дружно понимаем, что мощность есть произведение вращающего момента на скорость вращения коленчатого вала (обороты), то понятно, что мощность – зависимая от скорости величина. Рассмотрим чисто теоретический двигатель (не важно, электрический он, внутреннего сгорания или турбореактивный), который отдает постоянный вращающий момент на оборотах от 0 до бесконечности. (кривая 2 на рис. 1) Тогда его мощность будет линейно расти с оборотами от 0 до бесконечности (кривая 1 на рис. 1). Предмет нашего интереса – четырехтактные многоцилиндровые двигатели внутреннего сгорания в силу конструкции и процессов, в них происходящих, имеют рост момента с увеличением оборотов до его максимальной величины, и с дальнейшим увеличением оборотов момент сновападает (кривая 3 на рис. 1). Тогда и мощность будет иметь аналогичный вид (кривая 4 на рис. 1). Важным обстоятельством для понимания функций выпускной системы является связь вращающего момента с коэффициентом наполнения цилиндра. Давайте себе представим процесс, происходящий в цилиндре в фазе впуска. Предположим, коленчатый вал двигателя вращается настолько медленно, что мы можем наблюдать движение топливовоздушной смеси в цилиндре и в любой момент времени давление во впускном трубопроводе и цилиндре успевает выравниваться. Предположим, что вверхней мертвой точке (ВМТ) давление в камере сгорания равно атмосферному. Тогда при движении поршня из ВМТ в нижнюю мертвую точку (НМТ) в цилиндр попадет количество свежей топливовоздушной смеси, точно равное объему цилиндра. Говорят, что в таком случае коэффициент наполнения равен единице. Предположим, что в вышеописанном процессе мы закроем впускной клапан в положении поршня, соответствующем 80% его хода. Тогда мы наполним цилиндр только на 80% его объема и масса заряда составит соответственно 80%. Коэффициент наполнения в таком случае будет 0.8. Другой случай. Пусть некоторым образом нам удалось во впускном коллекторе создать давление на 20% выше атмосферного. Тогда в фазе впуска мы сможем наполнить цилиндр на 120% по массе заряда, что будет соответствовать коэффициенту наполнения 1.2. Так, теперь самое главное. Вращающий момент двигателя совершенно точно на кривой момента соответствует коэффициенту наполнения цилиндра. То есть вращающий момент там выше, где коэффициент наполнения выше, и ровно во столько же раз, если, конечно, мы не учитываем внутренние потери в двигателе, которые растут со скоростью вращения. Из этого понятно, что кривую момента и, соответственно, кривую мощности определяет зависимость коэффициента наполнения от оборотов. У нас есть возможность влиять в некоторых пределах на зависимость коэффициента наполнения от скорости вращения двигателя с помощью изменения фаз газораспределения. В общем случае, не вдаваясь в подробности, можно сказать, что чем шире фазы и чем в более раннюю по отношению к коленчатому валу область мы их сдвигаем, тем на больших оборотах будет достигнут максимум вращающего момента. Абсолютное значение максимального момента при этом будет немного меньше, чем с более узкими фазами (кривая 5 на рис. 1). Существенное значение имеет так называемая фаза перекрытия. Дело в том, что при высокой скорости вращения определенное влияние оказывает инерция газов в двигателе. Для лучшего наполнения в конце фазы выпуска выпускной клапан надо закрывать несколько позже ВМТ, а впускной открывать намного раньше ВМТ. Тогда у двигателя появляется состояние, когда в районе ВМТ при минимальном объеме над поршнем оба клапана открыты и впускной коллектор сообщается с выпускным через камеру сгорания. Это очень важное состояние в смысле влияния выпускной системы на работу двигателя. Теперь, я думаю, пора рассмотреть функции выпускной системы. Сразу скажу, что в выпускной системе присутствует три процесса. Первый – сдемпфированное в той или иной степени истечение газов по трубам. Второй – гашение акустических волн с целью уменьшения шума. И третий – распространение ударных волн в газовой среде. Любой из названных процессов мы будем рассматривать с позиции его влияния на коэффициент наполнения. Строго говоря, нас интересует давление в коллекторе у выпускного клапана в момент его открытия. Понятно, что чем меньшее давление, а лучше даже ниже атмосферного, удастся получить, тем больше будет перепад давления от впускного коллектора к выпускному, тем больший заряд получит цилиндр в фазе впуска. Начнем с достаточно очевидных вещей. Выпускная труба служит для отвода выхлопных газов за пределы кузова автомобиля. Совершенно понятно, что она не должна оказывать существенного сопротивления потоку. Если по какой то причине в выпускной трубе появился посторонний предмет, закрывающий поток газов (например, соседи пошутили и засунули в выхлопную трубу картошку), то давление в выпускной трубе не будет успевать падать, и в момент открытия выпускного клапана давление в коллекторе будет противодействовать очистке цилиндра. Коэффициент наполнения упадет, так как оставшееся большое количество отработанных газов не позволит наполнить цилиндры в прежней степени свежей смесью. Соответственно, двигатель не сможет вырабатывать прежний вращающий момент. Весьма важно понимать, что размеры трубы и конструкция глушителей шума в серийном автомобиле достаточно хорошо соответствуют количеству отработанных газов, вырабатываемых двигателем в единицу времени. Как только серийный двигатель подвергся изменениям с целью увеличения мощности (будь то увеличение рабочего объема или увеличение момента на высоких оборотах), сразу увеличивается расход газа через выпускную трубу и следует ответить на вопрос, а не создает ли теперь в новых условиях избыточного сопротивления серийная выпускная система. Так что из рассмотрения первого процесса, обозначенного нами, следует сделать вывод о достаточности размеров труб. Совершенно понятно, что после некоторого разумного размера увеличивать сечение труб для конкретного двигателя бессмысленно, улучшения не будет. А отвечая на вопрос, где же мощность, можно сказать, что тут главное не потерять, прибрести же ничего невозможно. Из практики могу сказать, что для двигателя объемом 1600 куб. см, имеющего хороший вращающий момент до 8000 об./мин., вполне достаточно трубы диаметром 52 мм. Как только мы говорим о сопротивлении в выпускной системе, необходимо упомянуть о таком важном элементе, как глушитель шума. Так как в любом случае глушитель создает сопротивление потоку, то можно сказать, что лучший глушитель – полное его отсутствие. К сожалению, для дорожного автомобиля это могут себе позволить только отчаянные хамы. Борьба с шумом – это, как ни верти, забота о нашем с вами здоровье. Не только в повседневной жизни, но и в автоспорте действуют ограничения на шум, производимый двигателем автомобиля. Должен сказать, что в большинстве классов спортивных автомобилей шум выпуска ограничен уровнем 100 дб. Это довольно лояльные условия, но без глушителя ни один автомобиль не будет соответствовать техтребованиям и не сможет быть допущенным к соревнованиям. Поэтому выбор глушителя – всегда компромисс между его способностью поглощать звук и низким сопротивлением потоку.

ТЕПЕРЬ, НАВЕРНОЕ, СЛЕДУЕТ ПРЕДСТАВИТЬ СЕБЕ, КАКИМ ОБРАЗОМ ЗВУК ГАСИТСЯ В ГЛУШИТЕЛЕ.

Акустические волны (шум) несут в себе энергию, которая возбуждает наш слух. Задача глушителя состоит в том, чтобы энергию колебаний перевести в тепловую. По способу работы глушители надо разделить начетыре группы. Это ограничители, отражатели, резонаторы и поглотители.

ОГРАНИЧИТЕЛЬ
выпускная системаПринцип его работы прост. В корпусе глушителя имеется существенное заужение диаметра трубы, некое акустическое сопротивление, а за ним сразу большой объем, аналог емкости. Продавливая через сопротивление звук, мы колебания сглаживаем объемом. Энергия рассеивается в дросселе, нагревая газ. Чем больше сопротивление (меньше отверстие), тем эффективней сглаживание. Но тем больше сопротивление потоку. Наверное, плохой глушитель. Однако в качестве предварительного глушителя в системе – довольно распространенная конструкция.


ОТРАЖАТЕЛЬ
выпускная системаВ корпусе глушителя организуется большое количество акустических зеркал, от которых звуковые волны отражаются. Известно, что при каждом отражении часть энергии теряется, тратится на нагрев зеркала. Если устроить для звука целый лабиринт из зеркал, то в конце концов мы рассеем почти всю энергию и наружу выйдет весьма ослабленный звук. По такому принципу строятся пистолетные глушители. Значительно лучшая конструкция, однако так как в недрах корпуса мы заставим также газовый поток менять направление, то все равно создадим некоторое сопротивление выхлопным газам. Такая конструкция чаще всего применяется в оконечных глушителях стандартных систем.

РЕЗОНАТОР
выпускная системаГлушители резонаторного типа используют замкнутые полости, расположенные рядом с трубопроводом и соединенные с ним рядом отверстий. Часто в одном корпусе бывает два не равных объема, разделенных глухой перегородкой. Каждое отверстие вместе с замкнутой полостью является резонатором, возбуждающим колебания собственной частоты. Условия распространения резонансной частоты резко меняются, и она эффективно гасится вследствие трения частиц газа в отверстии. Такие глушители эффективно в малых размерах гасят низкие частоты и применяются в основном в качестве предварительных, первых в выпускных системах. Существенного сопротивления потоку не оказывают, т.к. сечение не уменьшают.

ПОГЛОТИТЕЛЬ
выпускная системаСпособ работы поглотителей заключается в поглощении акустических волн неким пористым материалом. Если мы звук направим, например, в стекловату, то он вызовет колебания волокон ваты и трение волокон друг о друга. Таким образом, звуковые колебания будут преобразованы в тепло. Поглотите ли позволяют построить конструкцию глушителя без уменьшения сечения трубопровода и даже без изгибов, окружив трубу с прорезанными в ней отверстиями слоем поглощающего материала. Такой глушитель будет иметь минимально возможное сопротивление потоку, однако и хуже всего снижает шум. Надо сказать, что серийные выпускные системы используют в большинстве случаев различные комбинации всех приведенных способов. Глушителей в системе бывает два, а иногда и больше. Следует обратить внимание на особенность конструкций глушителей, которая в случае самостоятельного изготовления не позволяет достичь эффективного снижения шума, хотя кажется, что все сделано правильно. Если внутри глушителя у его стенок нет поглощающего материала, то источником звука становятся стенки корпуса. Многие замечали, что некоторые глушители имеют снаружи асбестовую обкладку, прижатую дополнительным листом фальшкорпуса. Это и есть та мера, которая позволит ограничить излучение через стенки и предотвратить нагрев соседних элементов автомобиля. Такая мера характерна для глушителей первого и второго типов. Есть еще одно обстоятельство, которое нельзя обойти вниманием в статье о тюнинге. Это тембр звука. Часто пожелания клиента к тюнинговой компании состоят в том, чтобы посредством замены глушителя добиться “благородного” звучания мотора. Надо заметить, что если требования к выпускной системе не распространяются дальше изменения “голоса”, то за дача существенно упрощается. Можно сказать, что, вероятнее всего, для таких целей больше подходит глушитель поглотительного типа. Его объем, количество набивки, а также сама набивка определяют спектр частот, интенсивно поглощаемых. Практически любая мягкая набивка поглощает в большей степени высокочастотную составляющую, придавая бархатистость звуку. Глушители резонаторного типа гасят низкие частоты. Таким образом, варьируя размеры, содержимое и набор элементов, можно подобрать тембр звучания.

ТЕПЕРЬ МОЖНО ПЕРЕЙТИ К ВОПРОСУ,НАИБОЛЕЕ ПОПУЛЯРНОМУ И БОЛЕЕ СЛОЖНОМУ. КАКИМ ОБРАЗОМ ДВИГАТЕЛЬ БЛАГОДАРЯ НАСТРОЙКЕ ВЫПУСКНОЙ СИСТЕМЫ МОЖЕТ ПОЛУЧИТЬ ДОПОЛНИТЕЛЬНУЮ МОЩНОСТЬ?

Как мы уже уяснили, коэффициент наполнения, вращающий момент и мощность зависят от перепада давления между впускным и выпускным коллекторами в фазе продувки. Выпускную систему можно построить таким образом, что распространяющиеся в трубах ударные волны, отражаясь от различных элементов системы, будут возвращаться к выпускному клапану в виде скачка давления или разрежения. Откуда же появится разрежение, спросите вы. Ведь в трубу мы всегда только нагнетаем и никогда не отсасываем. Дело в том, что в силу инерции газов за скачком давления всегда следует фронт разрежения. Именно фронт разрежения интересует нас больше всего. Нужно только сделать так, чтобы он был в нужном месте в нужное время. Место нам уже хорошо известно. Это выпускной клапан. А время нужно уточнить. Дело в том, что время действия фронта весьма незначительное. А время открытия выпускного клапана, когда фронт разрежения может создать полезную для нас работу, сильно зависит от скорости вращения двигателя. Да и весь период фазы выпуска нужно разбить на две составляющие. Первая – когда клапан только что открылся. Эта часть характеризуется большим перепадом давления и активным истечением газов в выпускной коллектор. Отработанные газы и без посторонней помощи после рабочего хода покидают цилиндр. Если в этот момент волна разрежения достигнет выпускного клапана, маловероятно, что она сможет повлиять на процесс очистки. А вот конец выпуска более интересен. Давление в цилиндре уже упало почти до атмосферного. Поршень находится около ВМТ, значит, объем над поршнем минимален. Да еще впускной клапан уже приоткрыт. Помните? Такое состояние (фаза перекрытия) характеризуется тем, что впускной коллектор через камеру сгорания сообщается с выпускным. Вот теперь, если фронт раз режения достигнет выпускного клапана, мы сможем существенно улучшить коэффициент наполнения, так как даже за короткое время действия фронта удастся продуть маленький объем камеры сгорания и создать разрежение, которое поможет разгону топливовоздушной смеси в канале впускного коллектора. А если представить себе, что как только все отработанные газы покинут цилиндр, а разрежение достигнет свое го максимального значения, выпускной клапан закроется, мы сможем в фазе впуска получить заряд больший, чем если бы очистили цилиндр только до атмосферного давления. Этот процесс дозарядки цилиндров с помощью ударных волн в выпускных трубах может позволить получить высокий коэффициент наполнения и, как следствие, дополнительную мощность. Результат его действия примерно такой, как если бы мы нагнетали давление во впускном коллекторе с помощью компрессора. В конце концов, какая разница, каким образом создан перепад давления, заталкивающий свежую смесь в камеру сгорания, с помощью нагнетания со стороны впуска или разрежения в цилиндре? Такой вот процесс может вполне происходить в выпускной системе ДВС. Осталась сущая мелочь. Нужно такой процесс организовать.

Первым необходимым условием дозарядки цилиндров с помощью ударных волн надо назвать существование достаточно широкой фазы перекрытия. Строго говоря, нас интересует не столько сама ширина фазы как геометрическая величина, сколько интервал времени, когда оба клапана открыты. Без особых разъяснений понятно, что при постоянной фазе с увеличением скорости вращения время уменьшается. Из этого автоматически следует, что при настройке выпускной системы на определенные обороты одним из варьируемых параметров будет ширина фазы перекрытия. Чем выше обороты настройки, тем шире нужна фаза. Из практики можно сказать, что фаза перекрытия менее 70 градусов не позволит иметь заметный эффект, а значение для настроенных на обычные 6000 об/мин систем составляет 80 - 90 градусов.
выпускная системаВторое условие уже определили. Это необходимость вернуть к выпускному клапану ударную волну. Причем в многоцилиндровых двигателях вовсе необязательно возвращать ее в тот цилиндр, который ее сгенерировал. Более того, выгодно возвращать ее, а точнее, использовать в следующем по порядку работы цилиндре. Дело в том, что скорость распространения ударных волн в выпускных трубах - есть скорость звука. Для того чтобы возвратить ударную волну к выпускному клапану того же цилиндра, предположим, на скорости вращения 6000 об/мин, надо расположить отражатель на расстоянии примерно 3,3 метра. Путь, который пройдет ударная волна за время двух оборотов коленчатого вала при этой частоте, составляет 6,6 метра. Это путь до отражателя и обратно. Отражателем может служить, например, резкое многократное увеличение площади трубы. Лучший вариант - срез трубы в атмосферу. Или, наоборот, уменьшение сечения в виде конуса, сопла Лаваля или, совсем грубо, в виде шайбы. Однако мы договорились, что различные элементы, уменьшающие сечение, нам неинтересны. Таким образом, настроенная на 6000 об/мин выпускная система предполагаемой конструкции для, например, четырехцилиндрового двигателя будет выглядеть как четыре трубы, отходящие от выпускных окон каждого цилиндра, желательно прямые, длиной 3,3 метра каждая. У такой конструкции есть целый ряд существенных недостатков. Во-первых, маловероятно, что под кузовом, например, Гольфа длиной 4 метра или даже Ауди А6 длиной 4,8 метра возможно разместить такую систему. Опять же, глушитель все-таки нужен. Тогда мы должны концы четырех труб ввести в банку достаточно большого объема, с близкими к открытой атмосфере акустическими характеристиками. Из этой банки надо вывести газоотводную трубу, которую необходимо оснастить глушителем.

Короче, такого типа система для автомобиля не подходит. Хотя справедливости ради надо сказать, что на двухтактных четырехцилиндровых мотоциклетных моторах для кольцевых гонок она применяется. Для двухтактного мотора, работающего на частоте выше 12 000 об/мин, длина труб сокращается более чем в четыре раза и составляет примерно 0,7 метра, что вполне разумно даже для мотоцикла.

Вернемся к нашим автомобильным двигателям. Сократить геометрические размеры выпускной системы, настроенной на те же 6000 об/мин, вполне можно, если мы будем использовать ударную волну следующим по порядку работы цилиндром. Фаза выпуска в нем наступит для трехцилиндрового мотора через 240 градусов поворота коленчатого вала, для четырехцилиндрового - через 180 градусов, для шестицилиндрового - через 120 и для восьмицилиндрового - через 90. Соответственно, интервал времени, а следовательно, и длина отводящей от выпускного окна трубы пропорционально уменьшается и для, например, четырехцилиндрового двигателя сократится в четыре раза, что составит 0,82 метра. Стандартное в таком случае решение - всем известный и желанный "паук". Конструкция его проста. Четыре так называемые первичные трубы, отводящие газы от цилиндров, плавно изгибаясь и приближаясь друг к другу под небольшим углом, соединяются в одну вторичную трубу, имеющую площадь сечения в два-три раза больше, чем одна первичная. Длина от выпускных клапанов до места соединения нам уже известна - для 6000 об/мин примерно 820 мм. Работа такого состоит в том, что следующий за ударной волной скачок разрежения, достигая места соединения всех труб, начинает распространяться в обратном направлении в остальные три трубы. В следующем по порядку работы цилиндре в фазе выпуска скачок разрежения выполнит нужную для нас работу.

Тут надо сказать, что существенное влияние на работу выпускной системы оказывает также длина вторичной трубы. Если конец вторичной трубы выпущен в атмосферу, то импульсы атмосферного давления будут распространяться во вторичной трубе навстречу импульсам, сгенерированным двигателем. Суть настройки длины вторичной трубы состоит в том, чтобы избежать одновременного появления в месте соединения труб импульса разрежения и обратного импульса атмосферного давления. На практике длина вторичной трубы слегка отличается от длины первичных труб. Для систем, которые будут иметь дальше глушитель, на конце вторичной трубы необходимо разместить максимального объема и максимальной площади сечения банку с поглощающим покрытием внутри. Эта банка должна как можно лучше воспроизводить акустические характеристики бесконечной величины воздушного пространства. Следующие за этой банкой элементы выпускной системы, т.е. трубы и глушители, не оказывают никакого воздействия на резонансные свойства выпускной системы. Их конструкцию, влияние на сопротивление потоку, на уровень и тембр шума мы уже обсудили. Чем ниже избыточное давление они обеспечат, тем лучше.

выпускная система


Итак, мы уже рассмотрели два варианта построения настроенной на определенные обороты выпускной системы, которая за счет дозарядки цилиндров на оборотах резонанса увеличивает вращающий момент. Это четыре отдельные для каждого цилиндра трубы и так называемый "паук" "четыре в один". Следует также упомянуть о варианте "два в один - два в один" или "два Y", который наиболее часто встречается в тюнинговых автомобилях, так как легко компонуется в стандартные кузова и не слишком сильно отличается по размерам и форме от стандартного выпуска. Устроен он достаточно просто. Сначала трубы соединяются попарно от первого и четвертого цилиндров в одну и второго и третьего в одну как цилиндров, равноотстоящих друг от друга на 180 градусов по коленчатому валу. Две образовавшиеся трубы также соединяются в одну на расстоянии, соответствующем частоте резонанса. Расстояние измеряется от клапана по средней линии трубы. Попарно соединяющиеся первичные трубы должны соединяться на расстоянии, составляющем треть общей длины. Один из часто встречающихся вопросов, на которые приходится отвечать, это какой "паук" предпочесть. Сразу скажу, что ответить на этот вопрос однозначно нельзя. В некоторых случаях стандартный выпускной коллектор со стандартной приемной трубой работает абсолютно так же. Однако сравнить упомянутые три конструкции, несомненно, можно.

Тут надо обратиться к такому понятию, как добротность. Постольку, поскольку настроенный выпуск суть есть колебательная система, резонансные свойства которой мы используем, то понятно, что ее количественная характеристика - добротность - вполне может быть разной. Она действительно разная. Добротность показывает, во сколько раз амплитуда колебаний на частоте настройки больше, чем вдали от нее. Чем она выше, тем больший перепад давления мы можем использовать, тем лучше наполним цилиндры и, соответственно, получим прибавку момента. Так как добротность - энергетическая характеристика, то она неразрывно связана с шириной резонансной зоны. Не вдаваясь в подробности, можно сказать, что если мы получим большой выигрыш по моменту, то только в узком диапазоне оборотов для высокодобротной системы. И наоборот, если диапазон оборотов, в котором достигается улучшение, велик, то по величине выигрыш незначительный, это низкодобротная система.. На рис 2 по вертикальной оси отложено давление - разрежение, получаемое в районе выпускного клапана, а по горизонтальной оси - обороты двигателя. Кривая 1 характерна для высокодобротной системы. В нашем случае это четыре раздельные трубы, настроенные на 6000 об/мин.
выпускная системаПервый. Так как вращающий момент пропорционален перепаду давления, то наибольший прирост даст высокодобротная система номер один. Однако в узком диапазоне оборотов. Настроенный двигатель с такой системой будет иметь ярко выраженный в зоне резонанса. И совершенно никакой на других оборотах. Так называемый однорежимный или мотор. Такой двигатель, скорее всего, потребует многоступенчатую трансмиссию. Реально такие системы в автомобилях не применяются. Система второго типа имеет более характер, используется в основном для кольцевых гонок. Рабочий диапазон оборотов гораздо шире, провалы меньше. Но и прирост момента меньше. Таким образом настроенный двигатель тоже не подарок, об эластичности и мечтать не приходится. Однако если главное - высокая скорость при движении, то под такой режим будет подстроена и трансмиссия, и пилот освоит способы управления. Система третьего типа еще ровнее. Диапазон рабочих оборотов достаточно широкий. Плата за такую покладистость - еще меньшая добавка момента, которую можно получить при правильной настройке. Такие системы используются для ралли, в тюнинге для дорожных автомобилей. То есть для тех автомобилей, которые ездят с частой сменой режимов движения. Для которых важен ровный вращающий момент в широком диапазоне оборотов.
выпускная системаВторой. Как всегда, бесплатных пряников не бывает. На вдвое меньших от резонансной частоты оборотах фаза отраженной волны повернется на 180 градусов, и вместо скачка разрежения в фазе перекрытия к выпускному клапану будет приходить волна давления, которая будет препятствовать продувке, то есть сделает желаемую работу наоборот. В результате на вдвое меньших оборотах будет провал момента, причем чем большую добавку мы получим вверху, тем больше потеряем внизу. И никакими настройками системы управления двигателем невозможно скомпенсировать эту потерю. Останется только мириться с этим фактом и эксплуатировать мотор в том диапазоне, который можно признать "рабочим".

Однако человечество придумало несколько способов борьбы с этим явлением. Один из них - электронно-управляемые заслонки около выходных отверстий в головке. Суть их работы состоит в том, что на низкой кратной частоте заслонка перегораживает частично выхлопной канал, препятствуя распространению ударных волн и тем самым разрушая ставший вредоносным резонанс. Выражаясь более точно, во много раз уменьшая добротность. Уменьшение сечения из-за прикрытых заслонок на низких оборотах не столь важно, так как генерируется небольшое количество выхлопных газов. Второй способ - применение так называемых коллекторов . Их работа состоит в том, что они оказывают небольшое сопротивление потоку, когда давление в коллекторе меньше, чем у клапана, и увеличивают сопротивление, когда ситуация обратная.

выпускная система Третий способ - несовпадение отверстий в головке и коллекторе. Отверстие в коллекторе большего размера, чем в головке, совпадающее по верхней кромке с отверстием в головке и не совпадающее примерно на 1 - 2 мм по нижней. Суть та же, что и в случае с конусом. Из головки в трубу - "по шерсти", обратно - "против шерсти". Два последних варианта нельзя считать исчерпывающими ввиду того, что "по шерсти" все-таки несколько хуже, чем гладкие трубы. В качестве лирического отступления могу сказать, что несовпадение отверстий - стандартное простое решение для многих серийных моторов, которое почему-то многие "тюнингаторы" считают дефектом поточного производства.

Третий. Следствие второго. Если мы настроим выпускную систему на резонансную частоту, например 4000 об/ мин, то на 8000 об/мин получим вышеописанный "провал, если на этих оборотах система окажется работоспособной.

Немаловажный аспект при рассмотрении работы настроенного выпуска - это требования к его конструкции с точки зрения акустических свойств. Первое и самое важное - в системе не должно быть других отражающих элементов, которые породят дополнительные резонансные частоты, рассеивающие энергию ударной волны по спектру. Это значит, что внутри труб должны отсутствовать резкие изменения площади сечения, выступающие внутрь углы и элементы соединения. Радиусы изгиба должны быть настолько большими, насколько позволяет компоновка мотора в автомобиле. Все расстояния по средней линии трубы от клапана до места соединения должны быть по возможности одинаковыми.

Второе важное обстоятельство состоит в том, что ударная волна несет в себе энергию. Чем выше энергия, тем большую полезную работу мы можем от нее получить. Мерой энергии газа является температура. Поэтому все трубы до места их соединения лучше теплоизолировать. Обычно трубы обматывают теплостойким, как правило, асбестовым материалом и закрепляют его на трубе с помощью бандажей или стальной проволоки.

Раз уж сейчас говорим о конструкции выпускной системы, нужно упомянуть о таком элементе конструкции, как гибкие соединения. Дело в том, что для переднеприводных автомобилей с поперечно расположенным силовым агрегатом существует проблема компенсации перемещений мотора относительно кузова. Так как опоры двигателя при такой компоновке принимают на себя весь реактивный момент от приводных валов ведущих колес, крены силового агрегата относительно кузова в продольном направлении могут иметь значительную величину. Конечно, величина отклонения сильно зависит от жесткости опор, однако нередко перемещения головки блока достигают величины 20 - 50 мм при переходе от торможения двигателем к разгону на низших передачах. В случае, если мы не позволим выпускной системе свободно изгибаться и сделаем ее абсолютно жесткой, конец глушителя должен будет совершать колебания вверх-вниз с амплитудой 500 - 600 мм, что определенно превышает разумную величину дорожного просвета значительной части автомобилей. Если мы попытаемся в таком случае закрепить трубу за кузов, то подвеска глушителя начнет играть роль дополнительной опоры силового агрегата и принимать на себя реактивный момент ведущих колес. В результате или непрерывно будут рваться подвесные элементы выпускной системы, или ломаться трубы. Для того чтобы избавиться от такого нежелательного явления, применяют гибкие соединения между трубами выпускной системы, позволяя приемной трубе перемещаться вместе с мотором, а всей остальной системе оставаться параллельной кузову. Есть несколько конструкций, позволяющих решить эту задачу. Две самые распта окажутся перегруженными и позволят двигателю в подкапотном пространстве с размахом, вполне вероятно превышающим разумные пределы.

выпускная система


Теперь, после того как стали ясны процессы, происходящие в выпускной системе, вполне можно перейти к практическим рекомендациям по настройке выпускных систем. Сразу скажу, что в такой работе нельзя полагаться на свои ощущения и необходимо измерительной системой. Измерять она должна прямым или косвенным методом обязательно как минимум два параметра - вращающий момент и обороты двигателя. Совершенно понятно, что лучший прибор - динамометрический стенд для двигателя. Обычно поступают следующим образом. Для подготовленного к испытаниям двигателя изготавливают экспериментальную выпускную систему. Так как мотор на стенде и нет ограничений в конфигурации труб из-за отсутствующего кузова, самые простые формы вполне применимы. Экспериментальная система должна быть удобной и максимально гибкой для изменения ее состава и длин труб. Хороший и быстрый результат дают различного рода телескопические вставки, позволяющие менять длины элементов в разумных пределах. Если вы хотите добиться от вашей силовой установки максимальных параметров, вы должны быть готовы выполнить значительное количество экспериментов. Математический расчет и "попадание в яблочко" с первого раза исключите из рассмотрения, как событие чрезвычайно маловероятное. Его можно использовать как "приземление в заданном районе". Некоторую уверенность в том, что вы недалеко от истины, дают опыт и предыдущие эксперименты с аналогичными по характеристикам моторами, у которых были получены хорошие результаты.

Тут, вероятно, надо остановиться и ответить на вопрос, а на какую частоту надо настраивать выпускную систему. Для этого надо определить цель. Постольку, поскольку в самом начале статьи мы решили, что будем добиваться максимальной мощности, то лучший в этом смысле вариант, если мы получим прирост момента на том участке моментной кривой, где коэффициент наполнения, а следовательно, и момент начинают существенно падать из-за высокой скорости вращения, т.е. мощность перестанет расти. Тогда небольшое приращение момента даст существенный выигрыш в мощности. См. рис. 3. Для того чтобы узнать эту частоту, необходимо как минимум иметь моментную кривую двигателя с ненастроенным выхлопом, т.е., например, со стандартным коллектором, открытым в атмосферу. Конечно, такие эксперименты весьма шумные и, извините за грубое слово, вонючие, однако необходимые. Некоторые меры по защите органов слуха и хорошая вентиляция позволят получить необходимые данные. Затем, когда нам станет известна частота настройки, нагружаем двигатель так, чтобы обороты стабилизировались в нужной точке кривой при на 100% открытом дросселе.

Теперь можно начинать экспериментировать с различными приемными трубами. Цель - подобрать такую приемную трубу или "паук", а точнее ее длину, чтобы получить прирост момента на нужной частоте. При попадании в нужную точку динамометр сразу отзовется увеличением измеряемой силы. Быстрее всего результат будет получен, если использовать телескопические трубы и менять длину на работающем и нагруженном двигателе. Меры безопасности будут нелишними, так как присутствует вероятность ожога, да и работающий с полной нагрузкой двигатель опасен в смысле разрушения. Известны случаи, когда при аварии обломки блока цилиндров пробивали кузов автомобиля и влетали в кабину водителя. После того как будет найдена конфигурация "паука", можно приступать к настройке вторичной трубы аналогичным образом. Как я уже говорил, влияние всех остальных элементов выпускной системы сводится к тому, чтобы не потерять уже достигнутого. Поэтому достаточно планируемые к установке в автомобиль трубы и глушителъ пристыковать к найденным и настроенным первым двум элементам и убедиться, что настройки сохранились или существенно не ухудшились. Далее можно уже приступать к проектированию и изготовлению рабочей системы, которая будет соответствовать автомобилю и разместится в предназначенном для нее туннеле кузова. Должен сказать, что работа очень большая и маловероятно, что может быть выполнена без специального оборудования. Кроме того, необходимо иметь в виду, что на параметры настройки выпускной системы оказывают влияние многие факторы. Известный авторитет в области спортивных моторов в США Smokey Yunick считает, что совместной настройке подлежит выпускная система, впускные и выпускные каналы головки, форма камеры сгорания, фазы газораспределения (распредвал), фазировка двигателя, впускной коллектор, система питания и система зажигания. Он утверждает, что любое изменение в одной из названных компонент обязательно влечет за собой перенастройку всех остальных для того, чтобы в худшем случае не навредить, а в лучшем достичь большей эффективности мотора. Как минимум понятно, что в фазе перекрытия, когда настроенная выпускная система выполняет полезную работу, мы имеем дело со сквозным потоком газов из впускного в выпускной коллектор через камеру сгорания. Впускной коллектор точно так же, как и выпускная система, может рассматриваться как колебательная акустическая система со своими резонансными свойствами. Так как цель настройки состоит в получении максимального перепада давления, роль впускного коллектора, а точнее его геометрии, очевидна. Ее влияние для моторов с широкой фазой перекрытия может оказаться меньше, чем от выпуска в силу меньшей энергетики, однако совместная настройка категорически необходима. Для узкофазных моторов (читай - серийных) настройка впускного коллектора, пожалуй, единственный способ получить резонансный наддув.

Пару слов хотелось бы сказать о разнице в настройке впрыскного и карбюраторного моторов.
Во-первых, у впрыскного мотора конструкция впускного коллектора может быть любая, так как мы не связаны с конструктивными особенностями карбюратора, а значит, возможности настройки гораздо шире.
Во-вторых, у него на кратных частотах отрицательное влияние обратного перепада давления существенно ниже. Карбюратор на любое движение воздуха в диффузоре распыляет топливо. Поэтому для кратных частот характерно переобогащение смеси из-за того, что один и тот же объем воздуха сначала движется через карбюратор из камеры сгорания к фильтру, а затем в том же такте обратно. В случае электронной системы впрыска количество топлива может быть строго отрегулировано с помощью программы управления. Также программируемый угол опережения зажигания может помочь уменьшить на этих оборотах вредное влияние обратной волны, не говоря уже об управлении теми заслонками на выхлопе, которые уже упоминались.
И, в-третьих, требование качественного приготовления смеси на низких оборотах диктует необходимость применять сужающееся сечение в карбюраторе, известное как диффузор, что создает дополнительное сопротивление потоку на высоких оборотах.

Ради справедливости надо сказать, что горизонтальные сдвоенные карбюраторы Вебер, Деллорто или Солекс частично решают эту проблему, позволяя каждому цилиндру дать трубу необходимой длины с целью настройки на нужные обороты, иметь достаточно большое сечение, но с переобогащением все равно бороться не в силах.

Есть еще один прием, позволяющий повысить эффективность выпускной системы. Применяется он в основном в тюнинге, так как при определенных эстетических наклонностях конструктора позволяет создать броский внешний вид автомобиля. Где-нибудь, как минимум на фотографиях авто американских любителей, вы наверняка видели автомобили с поднятыми из-под заднего бампера чуть ли не до крыши концами выпускных труб. Идея такой конструкции состоит в том, что при движении за задним срезом автомобиля создается "воздушный мешок", или зона разрежения. Если найти то место, где разрежение максимально, и конец выхлопной трубы поместить в эту точку, то уровень статического давления внутри выпускной системы мы понизим. Соответственно статический уровень давления у выпускного клапана упадет на ту же величину. Постольку, поскольку коэффициент наполнения тем выше, чем ниже давление у выпускного клапана, такое решение можно считать удачным.

В заключение хочу сказать, что при кажущейся простоте установка другой, отличной от серийной выпускной системы, как бы она ни была похожа на то, что применяется в спорте, вовсе не гарантирует вашему автомобилю дополнительных лошадиных сил. Если у вас нет возможности провести настройки для вашего конкретного варианта мотора, то самый разумный путь состоит в том, что вы купите полный комплект комплектующих для доработки мотора у того, кто эти испытания уже выполнил и заранее знает результат. Вероятно, комплект должен включать в себя как минимум распредвал, впускной и выпускной коллекторы и программу для вашего блока управления двигателем.

Александр Пахомов
журнал "Тюнинг" Санкт-Петербург

Кованые поршни. Для ценителей тюнинга эти слова звучат как магическое заклинание, да и простым автомобилистам наверняка доводилось слышать восторженные отзывы о подобных изделиях. Чем же кованые поршни лучше широко распространенных литых? В каких случаях их стоит применять?

Начнем с того, что обычные литые поршни прекрасно подходят для серийных моторов, а технология их изготовления – для массового производства. Если автомобиль для вас лишь средство доставки из пункта А в пункт Б, не стоит тратиться на замену штатных поршней коваными. Сказанное справедливо и в отношении капитального ремонта движка.

Другое дело – моторы форсированные, спортивные или тюнинговые. Они-то предъявляют повышенные требования к качеству комплектующих, в том числе поршней. Служившие верой и правдой стандартные поршни для этих двигателей тяжеловаты, а их форма неоптимальна. Кроме того, литье порой имеет невидимые глазу дефекты: каверны, пузырьки, вкрапления инородных тел, которые не выловить даже при тщательном контроле. При обычной эксплуатации они могут и не навредить. Но если, основательно доработав силовой агрегат, увеличить его мощность (и тем самым нагрузки), брак постарается заявить о себе: поршень внезапно прогорит, даст трещину и т. д. Владельцы «заряженных» отечественных машин подтвердят, что подобные казусы особенно часты при увеличении рабочего объема цилиндров путем установки коленвала с измененным радиусом кривошипа. В этом случае штатные поршни надо дорабатывать (торцевать), что явно не способствует увеличению их ресурса, привнося дополнительную слабину. Даже если деталь изготовлена идеально, отливка все-таки менее прочна, чем поковка, – сказывается разница в структуре.

На форсированных моторах детали испытывают большие механические и температурные нагрузки (температура на днище поршня, например, достигает 300...350 гр.С ). Поэтому, для производства кованных поршней с повышенными механическими характеристиками применяют высококремнистые (содержание Si > 12%) сплавы алюминия, обладающие более высокой жаропрочностью, меньшим коэффициент расширения, лучшими прочностными характеристиками по сравнению с обычными (Si < 12%) сплавами, применяемыми для отливок заготовок в кокиль. Качественные заготовки поршней из высококремнистых сплавов получить традиционным методом ( литье в кокиль) получить не удается из-за разных скоростей кристаллизации кремния в объеме отливки (появляются поры). Поэтому заготовки из этих сплавов получают по более сложным технологиям: жидкой штамповки и изотермической штамповки. В первом случае матрица заполняется расплавом металла и пуасон с заданной скоростью его деформирует. Во втором варианте штамповка производится из мерных заготовок, полученных из прутка, предварительно "обжатого" через фильеру. Мерная заготовка, пуансон и матрица разогреваются до температуры 400...450 гр.С и начинается процесс штамповки с заданной скоростью. Структура металла заготовок поршней, полученных штамповкой, отличается от литых тем, что она мелкодисперсная и не имеет таких грубых включений кристаллов кремния. В следствии этого материал штампованных поршней обладает повышенными механическими характеристиками не только при нормальной температуре, но и при рабочих температурах в 300...350 гр.С. Более лучшие прочностные характеристики позволяют сделать штампованный поршень более "ажурным", т.е. легче чем литой. К недостаткам штампованных поршней стоит отнести высокую стоимость и необходимость соблюдения при их установке более точных параметров, что требует высокой квалификации моториста.

Итак, в форсированных моторах применение кованых поршней (самыми популярными среди автолюбителей стали кованные поршни МАМИ) если уж не обязательно, то во всяком случае желательно. Но прежде чем говорить об их преимуществах, внесем ясность в терминологию. Точное название процесса не ковка, а изотермическая штамповка, поскольку заготовку поршня получают из прутка выдавливанием без плавления – единственным ходом пресса при постоянной температуре 495±5°С.

По сравнению с литыми штампованные поршни легче и одновременно прочнее, их форма оптимальна для форсированных двигателей, склонность к прогоранию меньше. В подтверждение обратимся к цифрам. Твердость кованых поршней 120–130 ед. по Бриннелю против 80–90 ед. у обычных. Термоциклическая стойкость выше в 5–6 раз. Если литые до появления первых трещин выдерживают в среднем 400 испытательных циклов «нагрев–охлаждение», то штампованные – 2500. Кроме того, стандартный «жигулевский» поршень диаметром 79 мм весит 376– 380 г, а кованый – на 40 г легче.



[ Назад | Начало | Наверх ]

По вопросам организации обращайтесь по телефону: 8-902-269-09-37 (Сергей)
По вопросам создания сайтов в Екатеринбурге и области: 8-965-508-13-38 (Александр)
The release is prepared by exstrim-bog.ru target="index">Екстремальные гонки
The release is prepared by exstrim-bog.ru target="index">Екстремальные гонки