Фотогалерея

, Гость!

Ник:
Пароль:


Войти через другие сервисы. Самый удобный и проверенный способ моментально стать пользователем нашего портала.

Статистика

Понедельник783
Вторник347
Среда539
Четверг400
Пятница417
Суббота422
Воскресенье431
Сейчас online:17
Было всего:4980422
Рекорд:4870

Кто онлайн:

Рейтинг сайта

УралWeb Рейтинг@Mail.ru

Яндекс.Метрика

HotLog Яндекс цитирования

Интересно

^^^Здесь может быть ваше фото^^^


Поиск
Поиск


1 августа в селе Кадниково пройдет открытое первенство Сысертского городского округа по конкуру — турнир «Тальков Камень». В первенстве примут участие более тридцати сильнейших спортсменов Свердловской, Челябинской, Тюменской областей и Пермского края.


В программе соревнований пройдут три конкура. Общий призовой фонд турнира — 50 тысяч рублей.
Конный спорт — один из наиболее зрелищных и привлекательных видов спорта. Он позволяет человеку не только достичь физического совершенства, но и испытать истинное удовольствие от общения и тесного контакта с лошадью, проявляющегося в полной согласованности в действиях при исполнении сложных упражнений. Турнир «Тальков Камень» станет очередным этапом в развитии конного спорта в Свердловской области.
До недавнего времени популяризация конного спорта в Свердловской области сдерживалась отсутствием комфортабельной спортивной арены для проведения соревнований с привлечением большого количества зрителей. С открытием конноспортивного комплекса «Белая Лошадь» у свердловчан появились новые возможности ближе познакомиться с этим видом спорта.
В этом году турниры в КСК «Белая Лошадь» стали наиболее ярким и значимым событием в спортивной жизни Среднего Урала, став для многих жителей любимым местом проведения досуга. Площадка прошла «обкатку», успешно проведя наиболее престижный региональный турнир — Кубок губернатора Свердловской области. Праздничная атмосфера, бескомпромиссная спортивная борьба, высокий профессиональный уровень участников, а также удобная парковка, комфортные трибуны и развлечения для зрителей стали настоящей визитной карточкой КСК «Белая Лошадь». Более пятисот зрителей готов принять конноспортивный комплекс во время турнира «Тальков Камень», гарантируя не просто яркое спортивное зрелище, но и возможность отдыха на природе на любой вкус.
В церемонии открытия турнира и награждения победителей примут участие министр сельского хозяйства и продовольствия Свердловской области Сергей Чемезов, глава администрации Сысертского городского округа Вадим Старков. Ожидается присутствие представителей государственных органов власти, политической и бизнес-элиты.
===========
www.justmedia.ru

Более шести тысяч жителей Богдановича остались без горячей воды из-за долгов Богдановичского фарфорового завода. В министерстве энергетики и ЖКХ Свердловской области ведут переговоры о реструктуризации долга и предлагают должникам взять в банках кредиты.


б этом рассказал JustMedia заместитель министра энергетики и ЖКХ Николай Смирнов.
На сегодняшний день общий долг поставщику газа в Богдановиче составляет 42 миллиона рублей. Из них 2,8 миллиона рублей — долги бюджетных организаций, 7,6 миллиона рублей — управляющих компаний. Остальная сумма приходится на Богдановичский фарфоровый завод, чья котельная питает 30% города. По словам Николая Смирнова, вчера между предприятием и «Уралсевергазом» достигнуто соглашение о поставках 10 тысяч кубометров газа на завод в течение 30 дней. Завтра у министра энергетики и ЖКХ пройдут переговоры о выкупе «Уралсевергазом» долгов населения и перечислений платежей населения непосредственно поставщику газа. Параллельно решается вопрос о возобновлении подачи горячей воды в дома горожан. Осенью тепло в дома жителей города будет поступать стабильно, заверил замминистра.
==========
www.justmedia.ru

Англичанин Гари Паффетт выиграл второй этап немецкой кузовной серии DTM на "Лаузитцринге", принеся первую победу команде Mercedes-Benz в этих гонках с 21 сентября прошлого года. В чемпионате DTM, в котором выступают лишь две марки - Mercedes-Benz и Audi, штутгартская конюшня не могла одолеть своих соперников из Ингольштадта на протяжении трех этапов подряд. Кроме того, благодаря второму месту Бруно Спенглера, Mercedes-Benz оформил победный дубль, чего не случалось с этой командой с 27 июля 2008 года, когда Бернд Шнайдер, Пол ди Реста, Джейми Грин и Гари Паффетт финишировали на первых четырех местах на "Нюрбургринге".

Паффетт и Спенглер заняли первые места после волны пит-стопов, во время которой англичанин и канадец смогли оттянуть свои дозаправки относительно остановок соперников. На пользу Mercedes-Benz пошло также то, что на этой гонке, согласно регламенту, их автомобили обладали меньшим гандикапом, чем машины Audi. Однако это не помешало Маттиасу Экстрему на Audi A4 занять третье место в гонке. Замкнули пятерку лидеров Пол ди Реста и Тимо Шайдер.

Благодаря стабильным выступлениям в первых двух гонках, действующий чемпион DTM Тимо Шайдер из Audi возглавил общий зачет, набрав 12 очков. Далее плотной группой расположились Кристенсен, Паффетт, ди Реста и Спенглер. Следующий этап серии состоится 28 июня на "Норисринге".
title
title
title

Результаты гонки на "Лаузитцринге"
Место Гонщик Команда Автомобиль Отставание
1. Гари Паффетт Salzgitter AMG Mercedes AMG Mercedes C-Klasse 1ч 05:35.819
2. Бруно Спенглер Mercedes-Benz Bank AMG AMG Mercedes C-Klasse +0.353
3. Маттиас Экштрем Audi Sport Team Abt Sportsline Audi A4 DTM +4.450
4. Пол ди Реста AMG Mercedes AMG Mercedes C-Klasse +10.840
5. Тимо Шайдер Audi Sport Team Abt Audi A4 DTM +21.832
6. Джейми Грин Junge Sterne AMG Mercedes AMG Mercedes C-Klasse +24.977
7. Майк Рокенфеллер Audi Sport Team Rosberg Audi A4 DTM +36.730
8. Маро Энгель GQ AMG Mercedes AMG Mercedes C-Klasse +46.347
9. Матиас Лауда stern AMG Mercedes AMG Mercedes C-Klasse +55.699
10. Матиас Лауда stern AMG Mercedes AMG Mercedes C-Klasse +1:00.978
11. Ральф Шумахер Trilux AMG Mercedes AMG Mercedes C-Klasse +1:15.339
12. Сьюзи Стоддарт TV-Spielfilm AMG Mercedes AMG Mercedes C-Klasse +1:20.882
13. Том Кристенсен Audi Sport Team Abt Audi A4 DTM +1:23.774
14. Томаш Костка Kolles Futurecom-BRT Audi A4 DTM +1:35.921
15. Кристиан Баккеруд Kolles Futurecom-TME Audi A4 DTM сход
16. Александр Према Audi Sport Team Phoenix Audi A4 DTM сход
17. Мартин Томчик Audi Sport Team Abt Sportsline Audi A4 DTM сход
18. Маркус Винкельхок Audi Sport Team Rosberg Audi A4 DTM сход
19. Катрин Легге Audi Sport Team Abt Lady Power Audi A4 DTM сход

Положение в общем зачете после второго этапа
Место Гонщик Команда Автомобиль Очки
1. Тимо Шайдер Audi Sport Team Abt Audi A4 DTM 12
2. Том Кристенсен Audi Sport Team Abt Audi A4 DTM 10
3. Гари Паффетт Salzgitter AMG Mercedes AMG Mercedes C-Klasse 10
4. Пол ди Реста AMG Mercedes AMG Mercedes C-Klasse 9
5. Бруно Спенглер Mercedes-Benz Bank AMG AMG Mercedes C-Klasse 8
6. Маттиас Экштрем Audi Sport Team Abt Sportsline Audi A4 DTM 8
7. Оливер Джарвис Audi Sport Team Phoenix Audi A4 DTM 6
8. Маркус Винкельхок Audi Sport Team Rosberg Audi A4 DTM 5
9. Маро Энгель GQ AMG Mercedes AMG Mercedes C-Klasse 4
10. Джейми Грин Junge Sterne AMG Mercedes AMG Mercedes C-Klasse 4
11. Майк Рокенфеллер Audi Sport Team Rosberg Audi A4 DTM 2
12. Ральф Шумахер Trilux AMG Mercedes AMG Mercedes C-Klasse 0
13. Матиас Лауда stern AMG Mercedes AMG Mercedes C-Klasse 0
14. Томаш Костка Kolles Futurecom-BRT Audi A4 DTM 0
15. Сьюзи Стоддарт TV-Spielfilm AMG Mercedes AMG Mercedes C-Klasse 0
16. Катрин Легге Audi Sport Team Abt Lady Power Audi A4 DTM 0
17. Йоханнес Зайдлитц Kolles Futurecom-TME Audi A4 DTM 0
18. Кристиан Баккеруд Kolles Futurecom-TME Audi A4 DTM 0
19. Мартин Томчик Audi Sport Team Abt Sportsline Audi A4 DTM 0
20. Александр Према Audi Sport Team Phoenix Audi A4 DTM 0


=================
auto.lenta.ru

Внезапная смерть в спорте: почему?

Трагическая новость, пришедшая из Чехова, где накануне прямо во время матча остановилось сердце 19-летнего хоккеиста, заставила вновь говорить о том, почему девиз "О спорт, ты мир" иногда прямо противоречит действительности…


Внезапная смерть молодого и очевидно здорового человека становится настоящей трагедией для общества и семьи, особенно если это происходит со спортсменами, которые всегда были символом здоровья и силы.

К счастью, внезапная смерть в спорте - достаточно редкое событие. Официальное определение понятия "внезапная смерть в спорте" предусматривает случаи смерти, наступившей непосредственно во время физических нагрузок, а также в течение первых 24-х часов с момента появления симптомов, заставивших изменить или прекратить свою деятельность. Среди причин смерти спортсменов травмы стоят не на первом месте. Выделяют следующие наиболее частые причины:
- сердечные причины;
- травмы;
- фармакологические препараты (допинг).

Статистика внезапной смерти в спорте

По версии журнала Forbes, самыми опасными видами спорта считаются:
- бейс-джампинг (прыжки с парашютом с высотных зданий и мостов)
- фридайвинг (ныряние без акваланга)
- дайвинг в подводных пещерах
- скоростной спуск на лыжах
- виндсерфинг на больших волнах
- BMX и горный велосипед
- альпинизм
- каякинг по рекам 5-й категории ("белая вода").

Внезапная смерть вследствие занятий спортом как медицинская проблема существует по крайней мере 2500 лет. В афинской "газете" 490 года до нашей эры было опубликовано следующее сообщение: "Трагедия в марафоне. Молодой солдат-афинянин по имени Фиддипид умер после забега на длинные дистанции. Сенат отдал распоряжение провести расследование, выяснить причины смерти и определить виновных…"

В исследовании серьезных травм и смертей в спорте в Австралии приводится статистика за двухлетний период, где общий показатель смерти составил 0,8 случая в год на 100 000 спортсменов. Причем для мужчин он значительно выше (1,5 случая в год), чем у женщин (0,1 случая).

Статистика смертельных травм в спорте также нечастая и зависит от страны. Например, в Швейцарии, где преобладают зимние виды спорта, в 2000 году первое место по смертности занимали горные лыжи (6200 несчастных случаев, 40% из которых были смертельными). На втором месте стоит скоростной спуск на лыжах (42 000 случаев, 19% смертельные), далее - сноуборд (24 500 случаев, 19% смертельные).

В Австралии другая статистика. За период с 2001 по 2003 год было обнаружено, что больше всего тяжелых травм и смертельных случаев происходит в таких видах спорта, как мотоспорт (32% от общих травм), конный спорт (14% от общих травм), австралийский футбол, водные лыжи и гонки на скоростных катерах (по 9% от общих травм) (Gabbe B.J и др., 2005).

В начале 1990 года Национальный совет по технике безопасности США опубликовал доклад со статистикой смертельных случаев в американском спорте за 1984-1989 гг. Самым опасным видом спорта оказался альпинизм. На каждые 10 тысяч человек, условно занимающихся альпинизмом, приходится 56 несчастных случаев со смертельным исходом.



Внезапная смерть в спорте из-за сердечных причин занимает особую отрасль кардиологии. Это сложная и глубокая медицинская проблема, которую в этом обзоре мы коснемся лишь поверхностно. Внезапная сердечная смерть в спорте может быть разделена на три категории:

- синдром commotio cordis, при котором резкий и сильный удар в грудь вызывает фатальную аритмию сердца;
- внезапная кардиальная смерть молодых спортсменов (меньше 30 лет), которая происходит преобладающе из-за структурной, обычно наследственной, болезни сердца;
- внезапная кардиальная смерть от ишемической болезни сердца, которая является главной причиной смерти спортсменов старше 30 лет и чаще всего происходит в таких видах спорта, как бег, велогонки и другие виды спорта с интенсивной динамической нагрузкой.

Риск сердечных осложнений в спорте
Hillis W.S. приводит таблицу, где основные виды спорта классифицированы по степени интенсивности и требованиям динамической и статической работам.

А. Высокая интенсивность
1. Высокие динамические и статические требования

* Американский футбол
* Бокс
* Бег на лыжах
* Горные лыжи
* Фехтование
* Хоккей на льду
* Гребля
* Регби
* Спринтерский бег
* Бег на коньках
* Водное поло
* Борьба


2. Высокие динамические, но низкие статические требования

* Бадминтон
* Бейсбол
* Баскетбол
* Хоккей на траве
* Спортивное ориентирование
* Спортивная ходьба
* Сквош
* Стайерский бег
* Плавание
* Настольный теннис
* Большой теннис
* Волейбол
* Футбол


3. Низкие динамические, но высокие статические требования

* Стрельба из лука
* Прыжки и метания
* Мотоспорт
* Водные лыжи
* Автоспорт
* Дайвинг
* Конный спорт
* Гимнастика
* Парусный спорт
* Прыжки с трамплина
* Тяжелая атлетика


Б. Низкая интенсивность
Низкие динамические и статические требования

* Боулинг
* Крикет
* Керлинг
* Гольф
* Стрельба

Профилактика внезапной кардиальной смерти
Наиболее важные профилактические меры:
- постоянно проходить медицинские обследования: выявление заболевания на ранней стадии снижает риск внезапной смерти и способствует более успешному лечению;

- избегать чрезмерно интенсивных упражнений. Все спортсмены должны знать о риске внезапной сердечной смерти, связанной с энергичной спортивной деятельностью. Человек должен выбрать для себя спорт, подходящий для его возраста и общего физического состояния. Неподготовленные люди не должны начинать участвовать в высокоинтенсивных спортивных состязаниях без должного периода тренировки. Пульс не должен быть выше 170 ударов в минуту, особенно если спортсмену более 35 лет. Чтобы адаптироваться к физическим нагрузкам, спортсмены должны хорошо разминаться, прогреваться и не охлаждать свой организм во время всего периода занятий. Такая стратегия поможет снизить вероятность аритмий в послетренировочный период.

- Реагировать на первые признаки
Первые признаки болезни, такие как боль в груди или повышенная усталость, предшествуют внезапной кардиальной смерти. При наличии этих симптомов следует немедленно прекратить физическую активность и обратиться за медицинской помощью. Вызывает большие опасения сверхэнтузиазм бегунов марафона и зрителей, которые поощряют этих спортсменов, которые через боль идут к финишной черте. Не стоит поощрять подобное отношение к спортсменам, так как это потенциально опасно для них. Также стоит избегать интенсивных нагрузок во время простудных и инфекционных заболеваний.

- Избегать перегрева организма
Так как высокая температура увеличивает частоту сердечных сокращений и может вызвать аритмию, то следует избегать горячих ванн и душа сразу после тренировок. Также следует избегать высокоинтенсивных нагрузок при высокой температуре окружающей среды, т.к. такие факторы, как потеря жидкости и микроэлементов (Na, K), могут сыграть роковую роль. Такие экологические факторы учитываются на многих судействах сквоша в Великобритании. В соревнованиях на выносливость, таких как марафон, потери жидкости и электролитов должны восполняться спортсменами в максимально возможной степени. Хотя "раздаточные пункты" доступны на большинстве марафонских соревнованиях марафона, не все атлеты используют их в должной мере.

- Не курить
Все спортсмены должны избегать курения. Мало того, что курение является фактором риска болезни коронарных артерий, оно также вызывает увеличение свободных жирных кислот в сыворотке крови и увеличивает продукцию катехоламинов, которые могут вызвать аритмии, особенно непосредственно после тренировки.

Смерть в спорте по причине травм
Чаще всего смерть наступает по причине тяжелых трав следующих частей тела:

- Голова
- Шея
- Грудь
- Брюшная полость
- Травмы головы

Допинг и смерть в спорте

Первая зарегистрированная смерть от употребления фармакологических препаратов в спорте произошла в 1879 году, когда во Франции английский велосипедист умер от передозировки амфетаминов прямо во время гонки. На Олимпиаде в 1960 году в Риме датский велосипедист умер от употребления тех же самых наркотиков. Эти смерти прошли почти незамеченными.

Лишь когда на велогонке Тур-де-Франс в 1967 году прямо на трассе, на виду у миллионов телезрителей скоропостижно скончался английский спортсмен Томми Симпсон, употреблявший стимулирующие препараты, международный Олимпийский комитет всерьез задумался над проблемой допинга. На следующий год на Олимпийских играх в Мехико впервые был введен допинг-контроль.


В 1987 году эритропэтин стал причиной смерти приблизительно 20 европейских велогонщиков. Хотя не было доказано, что именно эритропоэтин вызвал смерть этих спортсменов, многие эксперты утверждают, что из-за больших доз эритропоэтина в сочетании с обезвоживанием происходит фатальное сгущение крови, приводящее к эмболиям и смерти. Несмотря на скандалы и смерти во время гонки Тур-де Франс в 1998, эксперты продолжают утверждать, что эритропоэтин широко распространен в среде велогонщиков, а также лыжников, стайеров и плавцов. (Meduna V., 2000)

В научных журналах описано немало случаев смерти спортсменов, употреблявших допинг-препараты, и наибольшее их количество связано с употреблением анаболических стероидов в бодибилдинге.

Kennedy M.C. и Lawrence C. описывают случаи смерти 18-летнего и 24-летнего футболистов по причине внезапной остановки сердца во время тренировки (Kennedy M.C., Lawrence C., 1995). Коронарные артерии были абсолютно здоровы, тромбов также не было обнаружено. У обоих в моче были обнаружены следы анаболических стероидов. В качестве причины смерти рассматривают гипертрофию миокарда, которая была обнаружена у обоих.

Из этого небольшого обзора видно, что механизмы негативного влияния фармакологических препаратов на организм не всегда ясны, и причины смерти могут быть разные, но, тем не менее, всех их объединяет общая причина - отказ сердечно-сосудистой системы.

Сейчас в "черных списках" международного Олимпийского комитета находится 142 препарата, не считая их аналогов и заменителей: 30 видов анаболиков, 32 вида диуретиков, 4 вида пептидов, 42 вида стимуляторов, 34 вида наркотиков, а также две методики - "кровяной допинг" и "смена мочи". Кроме того, на ряд препаратов нет прямого запрета. Зато ограничен уровень содержания присутствующих в них веществ в организме спортсмена. Типичный пример - кофеин.

Абсолютно безвредного препарата не существует - любой из них потенциально опасен и может стать причиной ухудшения здоровья спортсмена и его смерти. И это совсем не зависит от того, запрещен данный препарат МОК или нет.

Подготовил Алексей Овчинников, исполнительный директор Федерации альпинизма России


По материалам www.sportmedicine.ru

В четверг на сайте ГИБДД РФ был опубликован проект новой методики проведения экзаменов на получение водительских прав. Как говорится в сообщении Департамента ОБДД МВД России, новую экзаменационную процедуру предлагается ввести в действие с 1 ноября текущего года, а пока все желающие (в том числе и автошколы) могут ознакомиться с ее текстом и отправить свои пожелания и замечания по электронной почте либо по обычной - на адрес ОБДД.

Стоит напомнить, что в настоящее время в России действуют правила проведения экзаменов, утвержденные постановлением правительства РФ N1396 от 15 января 1999 года. Однако сама экзаменационная методика утверждается приказом ГИБДД РФ, поэтому для того, чтобы новая методика вступила в силу, необходима лишь подпись нынешнего руководителя этого ведомства Виктора Кирьянова.


Как заявила "Ленте.Ру" генеральный директор Межрегиональной ассоциации автошкол (МААШ) Татьяна Шутылева, шансы на то, что новая методика действительно вступит в силу с 1 ноября 2009 года, очень велики. Однако, по ее словам, в проекте есть несколько спорных формулировок, которые за пять месяцев могут измениться - не зря же Госавтоинспекция впервые опубликовала такой документ заранее и предложила обсудить его всем заинтересованным сторонам.




Планов громадье

Принципиально новая методика мало чем отличается от действующей процедуры. Для того чтобы получить водительские права, "претендентам", как и прежде, необходимо сдать теоретический экзамен на знание правил дорожного движения и пройти практическую часть теста - выполнить определенные упражнения на площадке и в городе. Однако в этом документе впервые упоминаются три подкатегории водительских прав: "ВЕ", "СЕ" и "DE" - они предусмотрены для тех, кто планирует управлять автомобилем с прицепом. Для получения любой из подкатегорий, необходимо сначала сдать общий экзамен (на основную категорию), а затем пройти дополнительные практически тесты на машине с прицепом - на площадке и в реальных условиях.

Кроме того, если в действующей методике запрещалось сдавать экзамен на автомобиле с автоматической трансмиссией, но в новом варианте этого пункта уже нет. Наоборот, в тех практических упражнениях, где водителю необходимо поставить автомобиль "на ручник", водителю машины с "автоматом" теперь предписывается перевести селектор КПП в положение "Р". Непонятно, правда, сможет ли водитель сам выбирать тип трансмиссии, и появится ли в его правах соответствующая отметка, о которой руководство Госавтоинспекции говорило еще больше двух лет назад - формат "прав" в методике не описывается.

Проект новой методики предусматривает обязательную видеофиксацию всей экзаменационной процедуры с последующим хранением этой информации в течение 12 месяцев после сдачи экзамена. По замыслу разработчиков документа, наличие видеокамеры в машине позволит избежать предвзятого отношения экзаменаторов к "кандидатам в водители".

Однако для видеофиксации предлагается использовать не бытовые видеокамеры, а специальные аппаратно-программные комплексы аудио- и видеонаблюдения (АПК "АВН"), в состав которых войдут многоканальные регистраторы, модуль записи и хранения информации, а также несколько видеокамер, одновременно фиксирующих действия водителей, инструктора и экзаменатора, показания приборов автомобиля и обстановку вокруг машины.

Но главное, все это оборудование должно быть установлено в экзаменационном автомобиле стационарно. А это значит, что для проведения экзамена необходимо будет выделять специальные автомобили, тогда как раньше экзамены чаще всего проводились на машинах, предоставляемых автошколами.

У ГИБДД денег на постройку таких машин нет - по словам руководителя ГИБДД РФ Виктора Кирьянова, финансирование государственной программы "Повышение безопасности дорожного движения" в 2009 году будет сокращено на 35 процентов. Причем бюджет на закупку оборудования для сдачи экзаменов на права "урезан" в три раза: с 200,9 до 62 миллионов рублей. Поэтому, по словам гендиректора МААШ Татьяны Шутылевой, оборудовать машины системами видеофиксации, скорее всего, автошколам придется за свой счет…

Нет у ГИБДД денег и на строительство автоматизированных автодромов, которые также упоминаются в новой методике. Сейчас в России действуют лишь несколько таких сооружений - в Самаре, Тюмени, Челябинске и Санкт-Петербурге. Еще один автодром откроется летом в Ивановской области, причем на его строительство планируется потратить 34 миллиона рублей - сумму, равную половине "экзаменационного" госбюджета на 2009 год. По информации "Российской газеты", постройку автодромов предполагается переложить на плечи автошкол, но откуда образовательные учреждения возьмут несколько десятков миллионов рублей, издание не уточняет.

Учимся ездить

Теоретическая часть экзамена в новой методике почти не изменилась - "кандидаты в водители" по-прежнему должны за 20 минут ответить на 20 вопросов, разбитых на четыре тематические группы. Экзамен проводится либо при помощи автоматизированного комплекса, либо по-старинке - с бумажными экзаменационными билетами. Но если раньше можно было допустить две ошибки в ответах, то теперь схема изменилась: для положительной оценки автомобилисту необходимо правильно ответить на все 20 вопросов. А оценка "не сдал" выставляется в том случае, если водитель допустил две ошибки или не ответил на два вопроса в одном тематическом блоке.

Если же "кандидат в водители" допустил две ошибки в разных блоках, то ему дается дополнительные 10 минут на то, чтобы ответить на 10 вопросов по темам, в которых он ошибся. Правильно ответив на все вопросы "кандидат" получит оценку "СДАЛ", а иначе его отправят на пересдачу. Тем же, кто допустил одну ошибку, будет необходимо ответить на пять дополнительных вопросов из того же блока (за пять минут), причем больше ошибок допускать нельзя.

Практический экзамен, сдаваемый на площадке, изменится еще сильнее. Во-первых, если раньше мотоциклистам и водителям, сдающим экзамены на категорию "В", "С" и "D", было необходимо выполнить всего по три упражнения, то теперь для категории "А" предусмотрено девять заданий, а для автомобилистов - двенадцать! И еще шесть специальных упражнений для подкатегорий "ВЕ", "СЕ", и "DE".

По действующей методике будущий водитель должен продемонстрировать экзаменатору умение останавливаться и трогаться на подъеме, выполнять параллельную парковку задним ходом, проезжать "змейку", выполнять разворот и заезжать "в гараж". Однако на практическом экзамене его могли заставить выполнить только три задания в разных комбинациях.

Теперь же автомобилистам придется демонстрировать еще и "проезд пешеходного перехода", "проезд железнодорожного переезда" (в обоих случаях необходимо лишь остановиться перед стоп-линией и затем продолжить движение), а также "проезд регулируемого перекрестка" (остановка и продолжение движения прямо, направо и налево - по очереди - с включением поворотников). Кроме того, будущий водитель должен научиться выполнять маневр "поворот на 90 градусов" и проходить "змейку" (тот же поворот, только с углом 135 градусов, см. иллюстрацию), разгоняться "до 20 километров в час и более" с переключением с первой на вторую передачу (для машин с "механикой") и затем вновь снижать скорость до 20 километров в час и менее, а также выполнять экстренную остановку. В рамках последнего упражнения "кандидату в водители" необходимо за две секунды остановить автомобиль по команде экзаменатора и включить "аварийку", а затем продолжить путь.

Разработчики новой методики предлагают также поменять систему начисления штрафных баллов для первого этапа практического экзамена (на площадке). Раньше водитель получал максимальные пять баллов за грубую ошибку (отклонение от траектории, наезд на конус) и три балла за "среднюю" ошибку (заглох, не переключил передачу) - то есть, у водителя была возможность совершить одну не грубую ошибку и успешно пройти тест. Теперь же максимальное количество штрафных баллов увеличили до 25, но при этом поменяли вес самих баллов: за "среднюю" ошибку водитель получает 10 баллов, а за мелкую (выполнение упражнения не в том порядке, например) - пять. Это значит, что будущий водитель сможет допустить две средних ошибки, или четыре мелких, и получить в итоге оценку "сдал".

Второй этап практического теста проводится на дорогах общего пользования. "Кандидаты в водители" едут по маршруту, определяемому экзаменатором, и выполняют его команды. Максимальное количество штрафных баллов на этом этапе составляет 5, причем ошибки, как и прежде, разделены на "грубые", "средние" и "мелкие", и все они описаны в приложении к новой методике.

Для подкатегорий "ВЕ", "СЕ" и "DE" предусмотрен свой набор упражнений, которые предусматривают, в основном, маневры на автомобиле с прицепом задним ходом. Подробнее останавливаться на этом разделе мы не будем - все интересующиеся могут ознакомиться с заданиями по этой ссылке.

Что в итоге?

Как считает большинство специалистов, сама по себе новая методика не так уж и плоха, и при грамотной реализации действительно позволит более тщательно контролировать навыки водителей и исключить взяточничество среди экзаменаторов.

Однако, как отмечает президент МААШ Татьяна Шутылева, новая методика рассчитана, в первую очередь, на активное использование полностью автоматизированных автодромов, на которых экзамен проходит без присутствия экзаменатора. Такие сооружения позволяют проводить тест сразу для 40-60 кандидатов в водители, причем, по планам ГИБДД, "умные" автодромы должны появиться во всех регионах России к 2012 году.

Насколько эти планы осуществимы - пока сказать сложно. По словам Шутылевой, во многих регионах у ГИБДД нет даже собственных экзаменационных площадок, поэтому местные власти вряд ли смогут построить автоматизированный автодром стоимостью в 30-40 миллионов рублей без государственного финансирования.
Михаил Цымбал
===================
материал взят с сайта auto.lenta.ru

В среду руководитель компании Audi Руперт Стадлер объявил о том, что с 2011 года на испанском заводе марки Seat в Мартореле начнется производство нового компактного кроссовера Q3. Как говорится в официальном сообщении, инвестиции в предприятие для подготовки конвейера к сборке этой модели составят около 300 миллионов евро, а общий объем выпуска достигнет 80 тысяч машин в год.

По предварительной информации, внешность новинки будет выполнена в стиле концептуального кроссовера Audi Cross Coupe Quattro, впервые представленного на Шанхайском моторшоу в середине 2007 года. Полноприводный автомобиль планируется построить на платформе Volkswagen Tiguan и оснащать двухлитровыми бензиновыми турбомоторами мощностью от 170 до 200 лошадиных сил, а также 140- и 170-сильными дизелями. Среди трансмиссий будут механические, автоматические и роботизированные коробки передач с двумя сцеплениями.

Отметим, что Audi Q3 станет третьей и самой младшей моделью из серии "Q". Первые две машины – Q5 и Q7 – выпускаются на заводах марки в Германии и Словакии соответственно. Кроме того, компания Audi официально подтвердила информацию о том, что в 2011 году на рынок также выйдет компактный хэтчбек A1, который должен будет составить конкуренцию автомобилям марки MINI. Эта машина станет выпускаться с трех- и пятидверным кузовом и получит широкую гамму турбомоторов объемом от 1,2 до 2,0 литра.
==================
auto.lenta.ru

При выключенном зажигании в автомобилях ваз 2110 2111 2112 штатная проводка не обеспечивает манипуляции опускания и поднимания стекол без включения замка зажигания. Каждый раз при открывании и закрытии стекла необходимо поворачивать ключ замка зажигания и после определенной процедуры со стеклами соответственно возвращать ключ в исходное состояние.

Данная процедура неудобна в следствии значительной последовательности операций. Для независомого управления стеклоподъемниками в автомобилях ВАЗ 2110-11-12 предлагаем Вам ознакомится со следующей инструкцией по доработке электросхемы.

Для того что бы нам определиться с тем, что будет обеспечивать альтернативное питание стеклоподъемников. Изучим штатную принципиальную электрическую схему работы стеклоподъемников (рис 1).

Из нее видно что питание обеспечивается только после включения замка зажигания и срабатывания дополнительного реле К6 (на данной схеме не укзано) и реле стеклоподъемников (позиция 11) которые через свои контакты и предохранитель F5 (30А) питают стеклоподъемники. Питание стеклоподъемников обеспечим через цепь прикуривателя. Для этого лучше всего демонтировать нижнюю пластиковую левую панель у пола в ногах пассажира и в разьем контакта прикуривателя присоеденить провод. Присоединение произвести с проводом красно синего цвета - это "+" контакт. (соединение с данным проводом на схеме показано проводом черного цвета)

Далее данный провод протянув в пластиковом коробе между пердних сидений подвести к колодкам кнопок стеклоподъемников и соеденить с бело черным проводом. (общий + для всех 4 стеклоподъемников) При этом из монтажного блока удалить предохранитель F5 для ограничения тока через него на остальные системы энергопотребления. То есть не допустить алтернативное питание потребителей бортовой сети, также как и стеклоподъемников через питание прикуривателя. При этом предохранитель прикуривателя следует заменить с 15 А на 30 А, так как номинал для предохранителя стеклоподъемников выше чем у прикуривателя.

Некоторые заблуждения. Перемычка в колодке реле стеклоподъемников ничего не даст для их независимой работы. Так как до данного реле еще стоит дополнительное реле К6 которое ограничивает питание на реле стеклоподъемников. А вот перемычку в реле К6 для подачи напряжения на реле стеклоподъемников ставить запрещается, так как оно питает не только стеклоподъемники но и другие системы.

После данной доработки стеклоподъемники будут работать непосредственно от аккумуляторной батареи автомобиля и для их активации не потребуется включать зажигание автомобиля.

Затею эту собирался реализовать ещё год назад, да всё то времени не было, то идеи какие-то несуразные в голову лезли, сложные для воплощения в жизнь... Преимущества "Автоприборовской" панели были налицо: светофильтр не имеет явно выраженной зелёной окраски, как на панелях VDO или "Счётмаш", а потому отпадает необходимость делать его заново (как здесь, например).

Зелёный оттенок внутренней подсветке я без особых усилий придал, покрасив лампочки пастой зелёного цвета. А вот чтобы сделать бело-голубую, как на Toyota Camry...
Всё изменилось, когда прокатился на Honda Accord 2004-го г.в. Взглянув на её комбинацию приборов, понял: надо что-то делать... Поход в магазин радиотоваров увенчался успехом: на прилавке обнаружил белые светодиоды с едва заметным голубоватым оттенком яркостью 20 кД и ценой... 18 руб.! Купил 18 шт. и ещё столько же резисторов номиналом 1 кОм и решил: займусь!
Первым этапом явилась разборка комбинации приборов (КП). Нужно открутить саморезы, крепящие заднюю крышку, её снять, открутить саморезы крепления платы и, аккуратно поддевая плату по краям плоской отвёрткой, вытащить её полностью. При этом двигатели стрелок останутся внутри панели.
Светодиод и резистор - на фото, но перед пайкой при помощи крупнозернистой шкурки у каждого из них спилил "башку", оставив до кристалла около 1.5 мм, что обеспечивает не "точечный", а рассеянный свет.
Изучив конструкцию ламп подсветки, аккуратно вытащил лампы вместе с контактными ножками, а в пустой патрон вставил пару светодиодов, соединённых параллельно.
Дальше всё просто. Установив патрон на место в плату, к "плюсовому" контакту пары припаял резистор 1 кОм и подпаял к контактной площадке на плате (разумеется, "плюсовой"). "Минусовый" вывод сразу припаивал к "корпусной" контактной площадке. Итого из 5 патронов для ламп подсветки 3 центральных были со сдвоенными светодиодами, 2 верхних - с одиночными.

диодная подсветка диодная подсветка


Пробная сборка и включение подсветки со светодиодами только в штатных местах сразу повергла в уныние, все цифры светились с различной яркостью. "40" на тахометре оказалось в два раза ярче "50" или "80", свечение шкал и пиктограмм указателя температуры и уровня горючки тоже было тусклым. Чтобы подсветка была абсолютно равномерной, напротив цифр спидометра, тахометра и пиктограмм приборов приклеил герметиком небольшие печатные платы со светодиодом и резистором.
Соединения выполнил при помощи провода МГТФ-0,75, он очень удачно подходит для таких целей благодаря своей гибкости и лёгкости пайки. Все светодиоды подключил параллельно "штатной" подсветке. Проверял работоспособность прямо на столе, 12 В с блока питания компьютера свегда под рукой.
Благодаря тому, что светодиоды имеют бело-голубое свечение, красные секторы на шкалах и стрелки приборов светятся насыщенным красным, нет никакой необходимости устанавливать дополнительные красные светодиоды, изготавливать новую вставку с рисунками шкал и т.п.

диодная подсветка

диодная подсветка

диодная подсветка


Подсветку индикатора суточного пробега также решил сделать при помощи светодиода, но уже зелёного. Также крупной наждачкой спилил ему верхнюю часть и вместе с резистором разместил прямо в патроне, припаяв выводы к контактам.
Общий вид - на последнем фото. Добавлю, что истинную красоту панели и чистоту цвета в ночное время суток фотоаппарат передать не может, верьте на слово, всё получилось более чем красиво и потраченных денег, безусловно, стОит.

Автоматическое включение подсветки при включении зажигания сделал при помощи одного диода на 0.5А, анод которого припаял к 9-му контакту белой колодки (разумеется, с обратной стороны), а катод - к 4-му контакту красной колодки. Перед подключением в автомобиле штеккер 4-го контакта из красной колодки вытащил и заизолировал.
Как показали первые пробные ночные поездки, минус у всей вышеописанной затеи есть: слишком яркая подсветка, к тому же теперь никак не регулируемая... Если на трассе ночью почувствую дискомфорт, придётся дорабатывать. А в остальном я доволен. Любопытные взгляды из соседних "десяток" на светофорах уже заметил...

«Адаптивное» означает умение приспосабливаться к среде обитания – например, к отечественной машине с карбюраторным двигателем.

Вот подборка статеек по "АСУД" или пресловутое "Михайловское зажигание",они и помогли мне определиться с решением купить его или нет.

1. Статья "ПЕТЕРБУРГСКИЙ ПРИСПОСОБЛЕНЕЦ" из журнала "За рулём" от февраля 2001 года.

ПЕТЕРБУРГСКИЙ ПРИСПОСОБЛЕНЕЦ

«ИЗОБРЕСТИ ВЕЛОСИПЕД», ПОХОЖЕ, ВСЕ-ТАКИ УДАЛОСЬ


У нашей северной столицы много достойных визитных карточек – Михайловский замок, Михайловский дворец… А кто слышал про «михайловское» зажигание?

С появлением микропроцессорных систем катушка зажигания полностью попала в кабалу к электронике. Однако выяснилось, что новые двигатели, управляемые современными системами, унаследовали от своих предшественников кучу «детских» болезней – то «звенят» после очередной заправки, то демонстрируют врожденную «тупость»… Только для «лечения» вместо подбора пружинок в трамблере теперь приходится применять модный «чип-тюнинг» – медицина подорожала.

Можно упрекать разработчиков программ – не учли, недодумали… Бывает и такое, но главная причина капризов все же не в этом. Мы уже пытались жить согласно продиктованным сверху «Программам» – получалось не очень здорово. Так и здесь – и трамблер, и микропроцессор всего лишь следуют заложенной в них программе и пытаются управлять двигателем безо всяких скидок на его конкретный «норов». Если же при этом программа не самая умная, датчики не самые совершенные, а двигатели – отечественные, то получается не очень здорово. Вот и попробуйте ответить владельцу «Волги» – откуда взялось множество разных вариантов блоков управления для его машины и почему сразу не сделали так, «как надо»?

А КАК надо? Система зажигания – что велосипед: усовершенствовать ее пытались все поколения инженеров и радиолюбителей. Получалось чуть лучше, чуть хуже, а в целом – «дежа вю». Поэтому знакомство с системой петербургского изобретателя Глеба Михайлова могло бы и не состояться, если бы не одно словечко в ее названии. «Михайловское» зажигание – АДАПТИВНОЕ…


Необычного вида характеристика "михайловского" зажигания. "Размыв" - это мгновенная реакция системы на неоднородность бензовоздушной смеси: привычная по книжкам "прямолинейность" достижима только при идеализированных условиях эксплуатации. Для пояснения отдельно показаны изменения угла опережения на отметке 1168,9 об/мин.

«Адаптивное» означает умение приспосабливаться к среде обитания – например, к отечественной машине с карбюраторным двигателем. Эффект достигается без дополнительных датчиков и «Пентиума» в багажнике – блок управления имеет размеры обычного коммутатора (фото), а датчик всего один! Он следит за угловыми перемещениями вала двигателя, определяя с высокой точностью не только угол его поворота, но также скорость и ускорение. Даже при постоянной частоте вращения коленчатого вала его движение неравномерно: на сложную комбинацию взаимодействия отдельных цилиндров накладываются возмущающие факторы – от неоднородности состава бензовоздушной смеси до неровностей на дороге.

Характер движения вала является, по мнению изобретателя, интегральным показателем оптимальности управления опережением зажигания. Если в какой-то момент времени зажигание оказалось слишком ранним, то это тут же отразится на характере движения коленвала – система сразу это поймет. А поскольку ее быстродействие очень высокое, то уже в следующем цилиндре угол опережения будет скорректирован. В результате «михайловское» зажигание как бы приспосабливается к самочувствию двигателя и «выжимает» из мотора максимально возможный крутящий момент на всех режимах работы.

Изобретатель не будет изобретателем, если не уподобится рыбаку, рассказывающему друзьям про размер пойманной им рыбы. По мнению автора «михайловского» зажигания, оно должно на 10–15% повышать момент на валу двигателя и на столько же снижать расход топлива, в несколько раз сокращать содержание вредных веществ в выхлопных газах и спокойно «переваривать» низкооктановый бензин. Однако аплодисменты подождут – для начала хотя бы убедимся, что машина без привычных датчиков вообще способна передвигаться. Ведь сколько раз приходилось слышать: реформы, мол, правильные, а вот народец, извините, никуда не годится…

Привыкшая к «издевательствам» хозяина 14-летняя «Волга» покорно разевает пасть. Вместо штатного высоковольтного распределителя устанавливаем датчик, прикручиваем в удобное место коммутатор и две двухвыводные катушки зажигания, подключаем провода и первый раз пускаем двигатель без «центробежника» и «вакуумника». Поехали…

Давить на газ боязно – очень не хочется, чтобы красивая идея с первых же шагов аукнулась полным отсутствием динамики или противным «звоном». Однако машина разгоняется шустро и без «провалов». После ознакомления с тем, что намерил подключенный к системе «Ноут-бук» (см. рис.), выяснилось, что мы нечаянно «раскрутили» низкооборотный двигатель 4021 до 5600 об/мин – как говорится, увлеклись…

Возвращаться к пружинкам и грузикам не хочется – в Москву едем на «михайловском» зажигании. Про экономичность и экологичность расскажем потом – пощупаем, понюхаем… Однако уже ясно, что «изобрести велосипед» все-таки удалось. Заметим, что система успешно прошла сертификацию и уже производится. Цена кусается – 3780 руб. А в планах изобретателя – «разборка» с системами впрыска: неправильные они все, по его мнению…

2. Статья "Изобретено в России: Адаптивная система зажигания ДВС, Г.Михайлов" из журнала "КАТЕРА и ЯХТЫ" от февраля 1999 года.


АДАПТИВНАЯ СИСТЕМА ЗАЖИГАНИЯ ДВС



Петербургская фирма “Виктория” заключила с автором этой системы лицензионное соглашение на право использования патента в производстве. Первые же испытания адаптивной системы зажигания на двух двигателях новых снегоходов “Тайга” АО “Рыбинские моторы” показали, что ее применение позволяет существенно улучшить температурный режим работы ДВС — снизить температуру двигателя и выровнять температуры между цилиндрами при тех же выходных характеристиках.

Cовременные микропроцессорные системы управления зажиганием двигателей внутреннего сгорания (ДВС) представляют собой модельные системы. Необходимый набор датчиков, как правило, состоит из датчика начала отсчета, датчика частоты вращения, датчика разрежения во впускном коллекторе, датчика температуры ДВС и датчика детонации.
Датчики начала отсчета и датчик частоты вращения коленчатого вала (КВ) устанавливаются либо на коленчатом, либо на распределительном валу. Широко применяемые датчики частоты вращения вала имеют 60 импульсов за один оборот КВ и, следовательно, максимальное разрешение 3 угловых градуса.
Датчик разрежения косвенно позволяет ввести информацию о нагрузке ДВС, хотя истинная информация о нагрузке ДВС заложена в изменении ускорения вращения коленчатого вала.
Датчик детонации по существу необходим для защиты ДВС от ошибок, возникающих в результате вычисления необходимого угла опережения зажигания и состава бензино-воздушной смеси системы карбюрации двигателя.
Микропроцессорные системы предъявляют дополнительные требования к точности изготовления и сборки двигателей и требуют коррекции программы по мере износа ДВС при его эксплуатации, т.е. требуют повышенного внимания и более высокого уровня обслуживания при эксплуатации.
Упростить систему зажигания и карбюрации ДВС, повысить качество управления двигателем и существенно снизить содержание вредных веществ в отработанных газах (особенно при городском цикле эксплуатации автомобилей) можно лишь в замкнутых адаптивных (самообучающихся) системах управления.
Создать адаптивную систему управления можно, если удастся замерить изменение ускорения движения поршней (или коленчатого вала) при любом возмущающем воздействии: изменении состава топливно-воздушной смеси; реакции автомобиля на качество дорожного покрытия (через колесо на коленчатый вал); изменении октанового числа топлива и т.д. Для каждого типа ДВС существует оптимальное ускорение движения каждого поршня от верхней до нижней мертвой точки, при котором пульсации крутящего момента на коленчатом валу будут минимальны. За счет снижения пульсаций крутящего момента на коленчатом валу возрастает средний крутящий момент при том же расходе топлива. В этом случае стабилизируются процессы горения в камере сгорания (нет раннего и нет позднего зажигания во всех режимах); происходит более полное сгорание топлива при меньшей температуре в камере сгорания, что приводит к существенному снижению массовых выбросов вредных веществ, особенно окиси азота NОх, в отработанных газах.
Если замерить ускорение каждого поршня при его движении от нижней мертвой точки до верхней мертвой точки в момент всасывания бензиново-воздушной смеси (карбюратор) или испарения порции топлива при впрыске форсункой и одновременно измерить изменение ускорения КВ при воздействии возмущающих факторов (влияние нагрузки на КВ) в любой момент времени, и подать эти сигналы как сигнал рассогласования в систему обратной связи, то удается замкнуть систему по конечному параметру — коленчатому валу с учетом мгновенного состава бензиново-воздушной смеси в каждой камере сгорания.
Для этого необходимо на коленчатый или распределительный вал ДВС установить датчик положения коленчатого вала, датчик скорости и датчик ускорения коленчатого вала. Датчики должны быть определенным образом жестко связаны между собой в пространстве и во времени. Эти датчики должны снимать непрерывную информацию о мгновенном состоянии коленчатого вала. Вычислитель на основе сигналов положения, скорости и ускорения определяет необходимый угол опережения зажигания (впрыска для дизеля), исходя из заданных критериев оптимальности. Это может быть максимально возможный крутящий момент на валу во всех режимах работы ДВС, минимальные массовые выбросы окиси азота NОх, определенная температура выпускных газов и т.п.
Сигнал рассогласования, представляющий собой изменение угла опережения зажигания, является следствием мгновенного изменения пространственного и временного состояния коленчатого вала, и поступает (в виде изменения фазы управляющих импульсов) на свечи зажигания.
Адаптивная система зажигания ДВС предназначена для управления двигателями в реальном времени. Применение принципиально нового датчика положения коленчатого вала, его скорости и ускорения и нового способа обработки информации о вращении КВ позволило реализовать работу ДВС с максимальным моментом на КВ при оптимальном давлении в камере сгорания в любых переходных режимах. Способ управления моментом зажигания, устройство управления моментом зажигания и датчик положения и скорости защищены патентом РФ.
Датчик БЗМ-1 заменяет набор всех датчиков (начала отсчета, частоты вращения, разрежения во впускном коллекторе, температуры ДВС и детонации), необходимых для управления микропроцессорными системами зажигания. Он устанавливается на распределительном или коленчатом валу, работоспособен при температурах окружающей среды от минус 60°С до плюс 150°С и обеспечивает точность отработки угла опережения зажигания в пределах одной угловой минуты. Датчик способен передавать информацию без искажений через герметизирующие двигатель магнитно-нейтральные конструкционные материалы толщиной до 3 мм.

Основные технические характеристики адаптивной системы зажигания:
1. Диапазон возможных углов опережения зажигания, реализуемый ПИД-регулятором — 80 угловых градусов;
2. Время определения необходимого угла опережения зажигания ПИД-регулятором — 0.1 микросекунды;
3. Точность отработки угла опережения зажигания — одна угловая минута;
4. Энергия искры — 0.16 мДж;
5. Фронт искры при токе через свечу 0.3 А — не более одной микросекунды;
6. Длительность искры — 0.3-0.4 миллисекунды;
7. Максимальная потребляемая мощность при напряжении 13.4 В и 6000 об/мин — не более 50 ВА.


Рис. 1. “ВАЗ 2103”, двигатель 1600 см3 серийный, пробег 162 200 км. Колебательный процесс при подключении диска сцепления к трансмиссии автомобиля при переключении коробки передач со второй передачи на третью. Процесс занимает 10 циклов или 20 оборотов коленчатого вала.


Рис. 2. Мгновенная коррекция углов опережения зажигания в переходных режимах при переключении передачи со второй на третью полноприводного спортивного автомобиля “ВАЗ 21213”, двигатель 1900 см3. Степень сжатия 9.8. Пробег 20 000 км.

Адаптивная система зажигания может устанавливаться и на четырехтактные и на двухтактные двигатели. На двухтактных ДВС датчик устанавливается на КВ совместно с синхронным генератором маховичного типа. При наличии аккумулятора в системе зажигания имеется один общий импульсный стабилизатор напряжения питания. В случае отсутствия аккумулятора один импульсный стабилизатор обслуживает только систему зажигания, а второй импульсный стабилизатор регулирует бортовое напряжение; в этом случае ДВС сохраняет работоспособность при возникновении отказов в бортовой сети.
Особенностью адаптивной системы зажигания является ее способность работать без снижения выходных параметров ДВС на низкооктановом топливе — А-76 при степени сжатия до 9.5. При этом массовые выбросы вредных веществ СО, СН и NОх снижаются еще на 10-30% по сравнению с бензином АИ-92.
Адаптивная система зажигания прошла апробацию на четырехтактных ДВС всех типов отечественных автомобилей под аббревиатурой БЗМ и АСУД (около 1000 изделий), постоянно эксплуатируется в клубе “4X4” С.-Петербурга в экстремальных условиях — на соревнованиях в России и за рубежом. Управление каждым поршнем ДВС отдельно в цикле позволяет адаптивной системе зажигания существенно увеличить мощность двигателя на переходных режимах и улучшить динамические показатели. Стендовые испытания ДВС показывают увеличение максимального момента при работе ДВС с адаптивной системой зажигания на 10%, по сравнению с модельными системами зажигания.
Испытания адаптивной системы АСУД, проведенные в НАМИ, показали эффективное суммарное снижение выбросов на 38% и соответственно такое же увеличение выбросов СО2 без изменения расхода топлива.
В качестве примера приводим осциллограммы работы ДВС в переходных режимах серийного автомобиля с большим пробегом (рис.1) и полноприводного автомобиля клуба “4X4” (рис. 2), полученные при помощи портативного компьютера непосредственно на “грунте”.

3. Это просто официальный сайт завода где делают «АСУД»: http://www.rzp.narod.ru/autoelectronics.htm


4. АДАПТИВНАЯ ЭЛЕКТРОННАЯ СИСТЕМА ЗАЖИГАНИЯ БЗМ-В (МИХАЙЛОВА)



Автор адаптивной системы зажигания для двигателей внутреннего сгорания ГЛЕБ МИХАЙЛОВ, кандидат тех-нических наук, автор 70 изо-бретений, Главный конструк-тор
ООО "Виктория".


ВИКТОР ЯКОВЛЕВ - соавтор Глеба Михайлова. Ведущий специалист ООО "Виктория".
ПРИДУМАНО В РОССИИ
…Возвращаться к пружинам и грузикам не хочется - в Мо-скву едем на "михайловском" зажигании. Про экономичность и эколо-гичность расскажем потом… Однако уже ясно, что "изобрести велоси-пед все-таки удалось. Заметим что система успешно прошла сертифи-кацию и уже производится… А в планах изобретателя - "разборка" с ситемами впрыска: неправильно там все, по его мнению…
Михаил Колодочкин, журнал "За Рулем", №2, 2001 год.
ГЛЕБ МИХАЙЛОВ:
"...Идея изменить систему зажигания возникла у меня семь лет назад, когда я, став автомобилистом, впервые открыл крышку трамб-лера своей "Нивы". Вид пружинок, грузиков и пригорелых контактов в устройстве, призванном регулировать процессы, измеряемые сотыми долями секунды, просто заставил меня взяться за реконструкцию сис-темы зажигания. Как ни странно, почему-то современные методы управления сложнейшими механизмами не нашли еще применения в существующих двигателях внутреннего сгорания. Видимо, не зная традиционных способов конструирования ДВС, я решил использовать свой опыт по разработке систем, управляющих движущимися объек-тами. Такие системы используются в космических кораблях, пушках на мчащихся танках или следящих за пролетающими целями. роботах, выполняющих сложные операции.
Для управления любым вращающимся валом, расположенным в перемещающейся системе, необходимо иметь все данные о его по-ложении в пространстве, скорости и ускорении…
Исследования работы ДВС показали, что самой трудно опре-деляемой величиной является ускорения, с которым движутся вал и поршень. Ускорение поршня при приближении к верхней или нижней мертвой точке изменяется постоянно и очень быстро. Поэтому анализ характера его движения стал возможен только при использовании особого датчика, измеряющего мгновенную скорость в тысячу раз быстрее, чем все приборы, используемы в современных системах зажигания..."
Из статьи в журнале "78.RUS", № 10, ноябрь 2001 г.
ООО "Виктория" на протяжении нескольких лет занимается разработкой , производством и внедрением в эксплуатацию современ-ной безинерционной адаптивной системы зажигания БЗМ-В (Михай-лова) для двигателей внутреннего сгорания с различным числом ци-линдров, основанной на отечественных патентнозащищенных разра-ботках.
Система зажигания БЗМ-В предназначена для замены механических систем зажигания в серийно выпускаемых автомобилях и мотоциклов с карбюраторными четырехтактными двигателями всех моделей :
мотоциклы УРАЛ, ДНЕПР
автомобили ОКА,
автомобили ЖИГУЛИ
автомобили ВОЛГА, УАЗ, ГАЗЕЛЬ
автомобили МОСКВИЧ , ИЖ
автомобили грузовые УРАЛ, ЗИЛ, ГАЗ
автобусы ПАЗ, ЛиАЗ
автомобили иностранного производства "Ford","Opel","WV","AUDI", "PEUGIOT", "SKODA".
За этот период установлены системы зажигания на транс-портных средствах предприятий и организаций в различных районах России и ближнего зарубежья:
Редакция журнала "За Рулем" (г. Москва),
Главное Автобронетанковое Управление МО РФ (г. Моск-ва),
Самарский институт инженеров транспорта (САМИИТ, г. Самара),
Редакция телепрограммы "Фаркоп" (г. Санкт-Петербург),
ННТК "Саханефтегаз" (г. Якутск),
"Ямалсервисимпорттехника" (г. Надым),
Федерация автоспорта "OFF-ROAD 4х4" , (г. Санкт-Петербург),
Редакция Журнала "78 Регион" (г. Санкт-Петербург).
Официальными диллерами ООО"Виктория" по продаже и установке систем БЗМ-В на данный период являютя:
1. Автоцентр "Фаркоп" (г. Санкт-Петербург),
2. ООО "Дедал" (г. Якутск)
3. Автоцентр "МИКЛС" (г. Санкт-Петербург)
4. СТО г. Минск
5. СТО г. Одесса
6. "Ямалсервисимпорттехника" (г. Надым)


Адаптивная система управления углом опережения зажигания двигателей внутреннего сгорания представляет собой систему замкнутого регулирования. Совмещённый датчик, укреплённый на распределительном валу, позволяет с высокой точностью, до несколь-ких угловых минут, измерить угловое положение коленчатого вала, его скорость и ускорение. Система регулирования позволяет отслеживать развитие процесса горения в камере сгорания так, чтобы во всех пере-ходных режимах произведение давления в камере сгорания на плечо кривошипно-шатунного механизма было неизменной и максимальной величиной. Система управляет каждым поршнем двигателя так, чтобы коленчатый вал ДВС вращался равномерно во всех переходных режи-мах, что позволяет снизить пульсации момента и увеличить его сред-нее значение без увеличения расхода топлива. Система зажигания имеет столь высокую чувствительность и быстродействие, что позво-ляет определять состав бензиново-воздушной смеси в каждом цилинд-ре на этапе сжатия и произвести корректировку угла опережения зажи-гания в цилиндре, в котором должен произойти рабочий ход.
Основные параметры системы БЗМ-В
Диапазон изменения частоты вращения коленвала ДВС, об/мин от 20 до 10 000
Снижение расхода топлива до 7%
Снижение массовых выбросов СО, СН и NOx до 50%
Снижение выбросов холостого хода по СО и СН в до 80%
Увеличение момента на валу до 7%
Уменьшение времени разгона до 10%
Указанные преимущества подтверждены испытаниями в НАМИ, ЦНИИТА, ДААЗ, на автомобильном заводе ГАЗ , моторном заводе ЗМЗ, эксплуатацией в экстремальных условиях республики САХА (Якутия) и ездовыми испытаниями в режиме городского цикла по ЕЭК ООН 84 .
В 1994 году были проведены испытания БЗМ-1 на серийном дви-гателе ВАЗ 21081 с карбюратором ДААЗ 21081 со штатными регули-ровками в стендовых условиях в Центральном научно-исследовательском институте топливной аппаратуры ЦНИИТА
Сравнительная оценка мощностных, топливно-экономических и эко-логических показателей работы двигателя с системой БЗМ-1 относи-тельно штатной, дала следующие результаты (техническая заключение от 28 ноября 1994 года):
устойчивая работа двигателя на режиме холостого хода до 600 об/мин, более стабильную на режиме 850 об/мин, при соответст-вующей токсичности ОСТ 17.2.2.03-87 (N min: С0=0,28%; СН=320 1/млн; и Nпов: С0=0,43%; СН=240 1/млн );
повышение на 7-10 процентов запаса мощности и снижение удель-ного расхода топлива на режимах близких к холостому ходу и к внешней регулировочной характеристике: (частота вращения KB N=2000 об/мин);
обеспечение более "мягкой" (с точки зрения тепловой напряжен-ности) работы двигателя при адаптации к низкосортным бензинам.
Принцип работы, устройство и основные элементы адаптивной системы зажигания БЗМ-В защищены патентами РФ № 2073794, № 2066085. Лицензия № В1246(МЕ83) от 14.11.2000 г. Сертификат РОСС RU.ME83.B01246

Автомобиль ООО "Виктория" ВАЗ-2108 с уста-новленной на нем системой зажигания БЗМ-В прошел на бензине А-76 более 65 тысяч километров.
=================
vaz.ee

Теория двигателя внутреннего сгорания (ДВС) Классификация ДВС По способу смесеобразования

* с внешним смесеобразованием, у которых горючая смесь приготовляется вне цилиндров (карбюраторные и газовые)
* с внутренним смесеобразованием (рабочая смесь образуется внутри цилиндров) - дизели

По способу осуществления рабочего цикла

* четырехтактные
* двухтактные

По числу цилиндров

* одноцилиндровые
* двухцилиндровые
* многоцилиндровые

По расположению цилиндров

* с вертикальным или наклонным расположением цилиндров в один ряд
* V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным)

По способу охлаждения

* с жидкостным охлаждением
* с воздушным охлаждением

По виду применяемого топлива

* бензиновые
* дизельные
* газовые
* многотопливные

По степени сжатия

* высокого (E=12...18) сжатия
* низкого (E=4...9) сжатия

По способу наполнения цилиндра свежим зарядом

* без наддува, у которых впуск воздуха или горючей смеси осуществляется за счет разряжения в цилиндре при всасывающем ходе поршня
* с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым компрессором, с целью увеличения заряда и получения повышенной мощности двигателя

По частоте вращения

* тихоходные
* повышенной частоты вращения
* быстроходные

Основы устройства поршневого ДВС Основными частями ДВС являются кривошипно-шатунный механизм и газораспределительный механизм, а также системы питания, охлаждения, зажигания и смазочная система. Кривошипно-шатунный механизм преобразует прямолинейное возвратно- поступательное движение поршня во вращательное движение коленчатого вала. Механизм газораспределения обеспечивает своевременный впуск горючей смеси в цилиндр и удаление из него продуктов сгорания. Система питания предназначена для приготовления и подачи горючей смеси в цилиндр, а также для отвода продуктов сгорания. Смазочная система служит для подачи масла к взаимодействующим деталям с целью уменьшения силы трения и частичного их охлаждения, наряду с этим циркуляция масла приводит к смыванию нагара и удалению продуктов изнашивания. Система охлаждения поддерживает нормальный температурный режим работы двигателя, обеспечивая отвод теплоты от сильно нагревающихся при сгорании рабочей смеси деталей цилиндров поршневой группы и клапанного механизма. Система зажигания предназначена для воспламенения рабочей смеси в цилиндре двигателя. Итак, четырехтактный поршневой двигатель состоит из цилиндра и картера, который снизу закрыт поддоном. Внутри цилиндра перемещается поршень с компрессионными (уплотнительными) кольцами, имеющий форму стакана с днищем в верхней части. Поршень через поршневой палец и шатун связан с коленчатым валом, который вращается в коренных подшипниках, расположенных в картере. Коленчатый вал состоит из коренных шеек, щек и шатунной шейки. Цилиндр, поршень, шатун и коленчатый вал составляют так называемый кривошипно-шатунный механизм. Сверху цилиндр накрыт головкой с клапанами и, открытие и закрытие которых строго согласовано с вращением коленчатого вала, а следовательно, и с перемещением поршня. Перемещение поршня ограничивается двумя крайними положениями, при которых его скорость равна нулю. Крайнее верхнее положение поршня называется верхней мертвой точкой (ВМТ), крайнее нижнее его положение - нижняя мертвая точка (НМТ). Безостановочное движение поршня через мертвые точки обеспечивается маховиком, имеющим форму диска с массивным ободом. Расстояние, проходимое поршнем от ВМТ до НМТ, называется ходом поршня S, который равен удвоенному радиусу R кривошипа: S=2R. Пространство над днищем поршня при нахождении его в ВМТ называется камерой сгорания; ее объем обозначается через Vс; пространство цилиндра между двумя мертвыми точками (НМТ и ВМТ) называется его рабочим объемом и обозначается Vh. Сумма объема камеры сгорания Vс и рабочего объема Vh составляет полный объем цилиндра Vа: Vа=Vс+Vh. Рабочий объем цилиндра (его измеряют в кубических сантиметрах или метрах): Vh=пД^3*S/4, где Д - диаметр цилиндра. Сумму всех рабочих объемов цилиндров многоцилиндрового двигателя называют рабочим объемом двигателя, его определяют по формуле: Vр=(пД^2*S)/4*i, где i - число цилиндров. Отношение полного объема цилиндра Va к объему камеры сгорания Vc называется степенью сжатия: E=(Vc+Vh)Vc=Va/Vc=Vh/Vc+1. Степень сжатия является важным параметром двигателей внутреннего сгорания, т.к. сильно влияет на его экономичность и мощность. Принцип работы Действие поршневого двигателя внутреннего сгорания основано на использовании работы теплового расширения нагретых газов во время движения поршня от ВМТ к НМТ. Нагревание газов в положении ВМТ достигается в результате сгорания в цилиндре топлива, перемешанного с воздухом. При этом повышается температура газов и давления. Т.к. давление под поршнем равно атмосферному, а в цилиндре оно намного больше, то под действием разницы давлений поршень будет перемещаться вниз, при этом газы - расширяться, совершая полезную работу. Чтобы двигатель постоянно вырабатывал механическую энергию, цилиндр необходимо периодически заполнять новыми порциями воздуха через впускной клапан и топливо через форсунку или подавать через впускной клапан смесь воздуха с топливом. Продукты сгорания топлива после их расширения удаляются из цилиндра через впускной клапан. Эти задачи выполняют механизм газораспределения, управляющий открытием и закрытием клапанов, и система подачи топлива. Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным. Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска. Рабочий цикл четырехтактного карбюраторного двигателя

1. Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение 0.07 - 0.095 МПа, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.
2. Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.
3. Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ.
В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал. При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом.
В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 - 0.75 МПа, а температура до 950 - 1200 С.
4. Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

Рабочий цикл четырехтактного дизеля

1. Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздухоочистителя в полость цилиндра через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 - 0.095 МПа, а температура 40 - 60 С.
2. Сжатие. Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.
3. Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 - 9 МПа, а температура 1800 - 2000 С. Под действием давления газов поршень 2 перемещается от ВМТ в НМТ - происходит рабочий ход. Около НМТ давление снижается до 0.3 - 0.5 МПа, а температура до 700 - 900 С.
4. Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан 6 отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 - 0.12 МПа, а температура до 500-700 С. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Принцип действия двухтактного двигателя Двухтактные двигатели отличаются от четырехтактных тем, что у них наполнение цилиндров горючей смесью или воздухом осуществляется в начале хода сжатия, а очистка цилиндров от отработавших газов в конце хода расширения, т.е. процессы выпуска и впуска происходят без самостоятельных ходов поршня. Общий процесс для всех типов двухтактных двигателей - продувка, т.е. процесс удаления отработавших газов из цилиндра с помощью потока горючей смеси или воздуха. Поэтому двигатель данного вида имеет компрессор (продувочный насос). Рассмотрим работу двухтактного карбюраторного двигателя с кривошипно-камерной продувкой. У этого типа двигателей отсутствуют клапаны, их роль выполняет поршень, который при своем перемещении закрывает впускные, выпускные и продувочные окна. Через эти окна цилиндр в определенные моменты сообщается с впускным и выпускным трубопроводами и кривошипной камерой (картер), которая не имеет непосредственного сообщения с атмосферой. Цилиндр в средней части имеет три окна: впускное, выпускное и продувочное, которое сообщается клапаном с кривошипной камерой двигателя. Рабочий цикл в двигателе осуществляется за два такта:

1. Сжатие. Поршень перемещается от НМТ к ВМТ, перекрывая сначала продувочное, а затем выпускное окно. После закрытия поршнем выпускного окна в цилиндре начинается сжатие ранее поступившей в него горючей смеси. Одновременно в кривошипной камере вследствие ее герметичности создается разряжение, под действием которого из карбюратора через открытое впускное окно поступает горючая смесь в кривошипную камеру.
2. Рабочий ход. При положении поршня около ВМТ сжатая рабочая смесь воспламеняется электрической искрой от свечи, в результате чего температура и давление газов резко возрастают. Под действием теплового расширения газов поршень перемещается к НМТ, при этом расширяющиеся газы совершают полезную работу. Одновременно опускающийся поршень закрывает впускное окно и сжимает находящуюся в кривошипной камере горючую смесь. Когда поршень дойдет до выпускного окна, оно открывается и начинается выпуск отработавших газов в атмосферу, давление в цилиндре понижается. При дальнейшем перемещении поршень открывает продувочное окно и сжатая в кривошипной камере горючая смесь перетекает по каналу, заполняя цилиндр и осуществляя продувку его от остатков отработавших газов.

Рабочий цикл двухтактного дизельного двигателя отличается от рабочего цикла двухтактного карбюраторного двигателя тем, что у дизеля в цилиндр поступает воздух, а не горючая смесь, и в конце процесса сжатия впрыскивается мелкораспыленное топливо. Мощность двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в два раза больше четырехтактного за счет большего числа рабочих циклов. Однако неполное использование хода поршня для расширения, худшее освобождение цилиндра от остаточных газов и затраты части вырабатываемой мощности на привод продувочного компрессора приводят практически к увеличению мощности только на 60...70%====================
vaz.ee


[ Назад | Начало | Наверх ]

По вопросам организации обращайтесь по телефону: 8-902-269-09-37 (Сергей)
По вопросам создания сайтов в Екатеринбурге и области: 8-965-508-13-38 (Александр)
The release is prepared by exstrim-bog.ru target="index">Екстремальные гонки
The release is prepared by exstrim-bog.ru target="index">Екстремальные гонки